2.99 See Answer

Question: Assume that body temperatures of healthy adults


Assume that body temperatures of healthy adults are normally distributed with a mean of 98.20°F and a standard deviation of 0.62°F.
a. What percentage of adults have body temperatures greater than 99.99°F?
b. What percentage of adults have body temperatures less than 98.60°F?
c. If hospital officials decide to conduct tests on any patients more than 2 standard deviations above or below the mean, what are the cutoff temperatures?


> Among all of the 50,000 aspirin tablets produced by a pharmaceutical company over a given period, a sample of 200 tablets is tested and the mean amount of aspirin in these tablets is found to be 328 milligrams (mg) with a standard deviation of 12 mg.

> Among all of the 50,000 aspirin tablets produced by a pharmaceutical company over a given period, a sample of 200 tablets is tested and it is found that 4% of them do not meet specifications.

> A college has 3427 enrolled students. When 50 of them were randomly selected for a survey, it was found that 10% of them were in favor of fees for parking permits.

> For a random sample of 575 randomly selected car batteries, it was found that their output had a mean of 12.2 volts and a standard deviation of 1.4 volts.

> Our study measured the birth weights and incidence of jaundice among a sample of babies born at our hospital, and we found x‾ = 6.7 pounds and p̂ = 0.45, or 45% showed signs of jaundice.

> Although Nielsen surveys only a few thousand households out of the millions that own TVs, they have a good chance of getting an accurate estimate of the proportion of the population watching the Super Bowl.

> Nielsen Media Research determined the precise proportion of all Americans watching the Super Bowl by conducting a survey of a few thousand households.

> a. Is the elevation change more from B to D or from D to F? b. What is the elevation change if you walk from A to C to D to A? Figure 3.27

> Refer to the Dvorak data in Exercise 21 in Section 3.1 and construct a dot plot. Compare the result to the dot plot from Exercise 21 above. Based on the results, does either keyboard configuration appear to be better? Explain.

> This section includes formulas using the symbols μ, and n. What do these symbols represent?

> Police set up a sobriety checkpoint at which every fifth driver is stopped and interviewed.

> One study of heart disease involved treating male physicians with daily doses of aspirin. Because the study concluded that aspirin helps males avoid heart disease, it follows that females can also avoid heart disease by taking aspirin.

> What is a distribution of means (from a set of samples)?

> In designing new desks for an incoming class of 25 kindergarten girls, an important characteristic of the desks is that they must accommodate the sitting heights of those students. (The sitting height is the height measured from the bottom of the feet, w

> Federal Aviation Administration rules require airlines to estimate the weight of a passenger as 195 pounds, including carry-on baggage. Men have weights (without baggage) that are normally distributed with a mean of 172 pounds and a standard deviation of

> Currently, quarters have weights that are normally distributed with a mean of 5.670 grams and a standard deviation of 0.062 gram. A vending machine is configured to accept only those quarters with weights between 5.550 grams and 5.790 grams. a. If 280 di

> M&M plain candies have weights that are normally distributed with a mean weight of 0.8565 gram and a standard deviation of 0.0518 gram (based on measurements taken by one of the authors of this text). A random sample of 100 M&M candies is obtained from a

> When women first became pilots of fighter jets, engineers needed to redesign the ejection seats because they had been designed for men only. The ACES-II ejection seats were designed for men weighing between 140 pounds and 211 pounds. The population of wo

> Engineers must consider the breadths of male heads when designing motorcycle helmets for men. Men have head breadths that are normally distributed with a mean of 6.0 inches and a standard deviation of 1.0 inch (based on anthropometric survey data from Go

> a. If you walk from A to C, do you walk uphill or downhill? b. If you walk directly from E to F, does your elevation increase, decrease, or remain the same? Figure 3.27

> An aircraft strobe light is designed so that the times between flashes are normally distributed with a mean of 3.00 seconds and a standard deviation of 0.40 second. a. What is the likelihood (percentage) that an individual time between flashes is greater

> Assume that cans of cola are filled so that the actual amounts are normally distributed with a mean of 12.00 ounces and a standard deviation of 0.11 ounce. a. What is the likelihood (percentage) that a sample of 49 cans will contain a mean amount of at l

> What percentage of individual adult females have weights between 74 kg and 80 kg? If samples of 36 adult females are randomly selected and the mean weight is computed for each sample, what percentage of sample means is between 74 kg and 80 kg?

> In phase II testing of a new drug designed to increase the red blood cell count, a researcher obtains envelopes with the names and addresses of all treated subjects. She wants to increase the dosage in a sub-sample of 12 subjects, so she thoroughly mixes

> What percentage of individual adult females have weights between 75 kg and 81 kg? If samples of 100 adult females are randomly selected and the mean weight is computed for each sample, what percentage of sample means is between 75 kg and 81 kg?

> What percentage of individual adult females have weights greater than 79 kg? If samples of 25 adult females are randomly selected and the mean weight is computed for each sample, what percentage of the sample means are greater than 79 kg?

> What percentage of individual adult females have weights less than 75 kg? If samples of 36 adult females are randomly selected and the mean weight is computed for each sample, what percentage of the sample means are less than 75 kg?

> Rolling a fair 10-sided die produces a uniformly distributed set of numbers between 1 and 10 with a mean of 5.5 and a standard deviation of 2.872. Assume that n such dice are rolled many times and the mean of the n outcomes is computed each time. a. Find

> Rolling a fair 12-sided die produces a uniformly distributed set of numbers between 1 and 12 with a mean of 6.5 and a standard deviation of 3.452. Assume that n such dice are rolled many times and the mean of the n outcomes is computed each time. a. Find

> Weights of adult males are normally distributed with a mean of 85.5 kg and a standard deviation of 17.7 kg. Assume that many samples of size n are taken from a large population of adult males and the mean weight is computed for each sample. a. If the sam

> Are there any locations that stand out as unusual and that might therefore warrant special study? Explain Figure3.26

> IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. Assume that many samples of size n are taken from a large population of people and the mean IQ score is computed for each sample. a. If the sample size is n = 64, find

> If we record the means from 1000 rolls of 100 dice, the resulting distribution will be closer to a normal distribution than if we record the means from 1000 rolls of 10 dice.

> For the samples described in Exercise 6, the sample means will vary less than the original incomes.

> The distribution of incomes of adults is a right- skewed distribution. Therefore, if we select many samples of 64 incomes at random from this distribution, the means of these samples will also have a right-skewed distribution.

> The Journal of the American Medical Association prints an article evaluating a drug, and some of the physicians who wrote the article received funding from the pharmaceutical company that produces the drug.

> A process consists of repeating this operation: Randomly select two values from a normally distributed population and then find the mean of the two values. The sample means will be normally distributed, even though each sample has only two values.

> Briefly explain a major reason why the Central Limit Theorem is useful in statistics.

> What is the Central Limit Theorem? When does it apply?

> My professor graded the final on a curve, and she gave a grade of A+ to anyone who had a standard score of 2 or more.

> What is a percentile? Describe how Table A-1 (in Appendix A) allows you to relate standard scores and percentiles.

> Are there broad regions where melanoma mortality is more common than others? Which ones, and what do they have in common? Figure 3.26

> What is a standard score? How do you find the standard score for a particular data value?

> For a normal distribution, approximately what fraction of data values lie more than 1 standard deviation above the mean? When might data values be considered unusual? Explain.

> What is the 68-95-99.7 rule for normal distributions? Does it apply to other (not normal) distributions as well?

> Based on a random sample of movie lengths, the mean length is 110.5 minutes with a standard deviation of 22.4 minutes. Assume that movie lengths are normally distributed. a. What percentage of movies are more than 2 hours long? b. What percentage of movi

> Heights of adult American males are normally distributed with a mean of 69.0 inches and a standard deviation of 2.8 inches. The U.S. Marine Corps requires that males have heights between 64 inches and 78 inches. What percentages of males are eligible for

> Monsanto hires independent university scientists to determine whether its new, GMO (genetically modified organism) soybean poses any threat to consumers.

> At the district spelling bee, the girls have normally distributed scores with a mean score of 71 points and a standard deviation of 6 those students with a score greater than 75 are eligible to go to the state spelling bee. What percentage of the girls w

> Assume that the scores on the Graduate Record Exam (GRE) are normally distributed with a mean of 497 and a standard deviation of 115. a. A graduate school requires a GRE score of 650 for admission. To what percentile does this correspond? b. A graduate

> Based on data from the College Board, SAT scores on the Math Level 1 test are normally distributed with a mean of 621 and a standard deviation of 96. a. Find the percentage of scores greater than 600. b. Find the percentage of scores less than 700. c.

> The stack plot in Figure 3.25 shows the numbers of bachelor’s degrees awarded to males and females since 1970. The last few years are projections. a. Estimate the numbers of bachelor’s degrees to be awarded to males an

> Lengths of pregnancies are normally distributed with a mean of 268 days and a standard deviation of 15 days. a. What percentage of pregnancies last less than 250 days? b. What percentage of pregnancies last more than 300 days? c. If a birth is considered

> Consider the following table, showing the official mean weight and estimated standard deviation for five U.S coins. Suppose a vending machine is designed to reject all coins with weights more than 2 standard deviations above or below the mean. For each c

> The percentage of heights between 150 cm and 170 cm

> The percentage of heights between 180 cm and 200 cm

> The percentage of heights between 160 cm and 188 cm

> The percentage of heights between 167 cm and 181 cm

> Consumer Reports magazine prints a review of new cars and does not accept free products or run any advertisements from any companies.

> The percentage of heights greater than 180 cm

> The percentage of heights less than 146 cm

> The percentage of heights less than 200 cm

> The stack plot in Figure 3.24 on the next page shows Congressional Budget Office data for actual spending (through 2011) and projected spending on federal entitlement programs through 2085 as percentages of the gross domestic product (GDP). Interpret the

> The percentage of heights less than 160 cm

> The percentage of heights greater than 167 cm

> The percentage of heights greater than 181 cm

> The percentage of heights less than 181 cm

> The percentage of heights greater than 174 cm

> Percentage of scores between 88 and 127

> Percentage of scores between 70 and 115

> A pollster for the U.S. Department of Labor surveys 1500 randomly selected adults about their employment status.

> Percentage of scores between 70 and 130

> Percentage of scores between 85 and 115

> The graph in Figure 3.23 depicts U.S. marriage and divorce rates for selected years. The marriage rates are depicted by the blue bars, and the divorce rates are depicted by the maroon bars. The rates are given as number of marriages or divorces per 1000

> Percentage of scores greater than 145

> Percentage of scores greater than 88

> Percentage of scores less than 91

> Percentage of scores less than 130

> Percentage of scores greater than 70

> Percentage of scores less than 70

> Percentage of scores less than 115

> Percentage of scores greater than 100

> You want to conduct a survey to determine the proportion of eligible voters in California likely to vote for the Democratic presidential candidate in the next election. • Sample 1: All eligible voters in San Diego County • Sample 2: All eligible voters

> Adult males have sitting knee heights that are normally distributed with a mean of 21.4 inches and a standard deviation of 1.2 inches. Use the 68-95-99.7 rule to find the indicated quantity. a. Find the percentage of adult males with sitting knee height

> Consider the display in Figure 3.22 of median salaries of males and females in recent years. a. What general trends does the graph convey? b. Redraw the graph as a multiple line graph (with two lines). Briefly discuss the advantages and disadvantages of

> In a study of facial behavior, people in a control group are timed as to the duration of eye contact they make in a 5-minute period. Their times are normally distributed with a mean of 184.0 seconds and a standard deviation of 55.0 seconds (based on data

> Pulse rates for adult females are normally distributed with a mean of 74.0 beats per minute (bpm) and a standard deviation of 12.5 bpm. Use the 68-95-99.7 rule to find the following values. a. Percentage of pulse rates less than 74 bpm b. Percentage of p

> A test of depth perception is designed so that scores are normally distributed with a mean of 50 and a standard deviation of 10. Use the 68-95-99.7 rule to find the following values. a. Percentage of scores less than 50 b. Percentage of scores less than

> I found the standard score of the data value, even though I do not know the standard deviation of the data set.

> My good grades are a result of the fact that the number of hours I study each week put me in the 90th percentile for study time.

> My height puts me in the 37th percentile for my gender, which means my height has a negative standard score.

> Briefly describe the four conditions under which we can expect a data set to have a nearly normal distribution. Give an example of a set of data that might be approximated by the normal distribution.

> What does the area under the normal distribution curve represent? What is the total area under the normal distribution curve?

> Draw a rough sketch of a normal distribution. Do all normal distributions look the same?

> You want to determine the average (mean) number of robocalls received each day by adults in Alaska. • Sample 1: The 537 adults in Alaska who respond to a survey published in a newspaper • Sample 2: The first 537 people to visit a particular Anchorage

> The graph in Figure 3.21 shows home prices in different regions of the United States. a. Describe general trends that apply to the home price data for all regions. b. Describe any differences that you notice among the different regions. Figure 3.21

> When we refer to a “normal” distribution, does the word normal have the same meaning as it does in ordinary usage? Explain.

> Consider the graph of the normal distribution in Figure 5.15, which gives the relative frequencies in a distribution of body weights for a sample of male students. a. What is the mean of the distribution? b. Estimate (using area) the percentage of studen

> Consider the graph of the normal distribution in Figure 5.14, which illustrates the relative frequencies in a distribution of systolic blood pressures (in standard units of millimeters of mercury) for a sample of female students. The distribution has a s

> Consider the graph of the normal distribution in Figure 5.13, which shows the relative frequencies in a distribution of IQ scores. The distribution has a mean of 100 and a standard deviation of 16. a. What is the total area under the curve? b. Estimate (

2.99

See Answer