2.99 See Answer

Question: Find (a) the curl and (b) the


Find (a) the curl and (b) the divergence of the vector field.
F (x, y, z) = √x/ 1 + z i + √y 1 + x j + √z 1 + y k


> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = x3yz2 j + y4z3 k

> A vector field F is shown. Use the interpretation of divergence derived in this section to determine whether div F is positive or negative at P1 and at P2. -2 2 -2 tttt / 2. ! 11 !

> Evaluate the surface integral. ∫∫S (x + y + z) dS, S is the part of the half-cylinder x2 + z2 = 1, z > 0, that lies between the planes y = 0 and y = 2

> Use the Divergence Theorem to evaluate ∫∫S F ∙ dS, where F (x, y, z) = z2x i + (1/3 y3 + tan z) j + (x2z + y2) k and S is the top half of the sphere x2 + y2 + z2 = 1. [Hint: Note that S is not a closed surface. First compute integrals over S1 and S2, wh

> Use the Divergence Theorem to calculate the surface integral ∫∫S F  dS; that is, calculate the flux of F across S. F = |r | r, where r = x i + y j + z k, S consists of the hemisphere z = √1 - x2 - y2 and the disk x2 + y2 < 1 in the xy-plane

> Use the Divergence Theorem to calculate the surface integral &acirc;&#136;&laquo;&acirc;&#136;&laquo;S F dS; that is, calculate the flux of F across S. S is the surface of the solid bounded by the cylinder x2 + y2 = 4 and the planes z = y - 2 and z =

> Use the Divergence Theorem to calculate the surface integral &acirc;&#136;&laquo;&acirc;&#136;&laquo;S F dS; that is, calculate the flux of F across S. S is the surface of the solid bounded by the paraboloid z = 1 - x2 - y2 and the xy-plane F(x, y

> (a). What is a conservative vector field? (b). What is a potential function?

> Use the Divergence Theorem to calculate the surface integral &acirc;&#136;&laquo;&acirc;&#136;&laquo;S F dS; that is, calculate the flux of F across S. S is the surface of the tetrahedron enclosed by the coordinate planes and the plane x/a + y/b + z/c

> Verify that the Divergence Theorem is true for the vector field F on the region E. F (x, y, z) = 3x i + xy j + 2xz k, E is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1

> Evaluate the surface integral. ∫∫S x2yz dS, S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle [0, 3g] × [0, 2]

> Use Stokes’ Theorem to evaluate ∫C F ∙ dr. In each case C is oriented counterclockwise as viewed from above. F (x, y, z) = i + (x + yz) j + (xy - √z) k, C is the boundary of the part of the plane 3x + 2y + z = 1 in the first octant

> Use Stokes’ Theorem to evaluate ∫C F ∙ dr. In each case C is oriented counterclockwise as viewed from above. F (x, y, z) = (x + y2) i + (y + z2) j + (z + x2) k, C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

> Use Stokes’ Theorem to evaluate ∫∫S curl F  dS. F (x, y, z) = exy i + exz j + x2z k, S is the half of the ellipsoid 4x2 + y2 + 4z2 = 4 that lies to the right of the xz-plane, oriented in the direction of the positive y-axis

> Evaluate the surface integral. ∫∫S (x + y + z) dS, S is the parallelogram with parametric equations x = u + v, y = u - v, z = 1 + 2u + v, 0 < u < 2, 0 < v < 1

> Let r = x i + y j + z k and r = |r |. Verify each identity. (a). ∇r = r/r (b). ∇ × r = 0 (c). ∇ (1/r) = -r/r3 (d). = ln r = r/r2

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = x i + y j + 5 k, S is the boundary

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = x i + 2y j + 3z k, S is the cube wi

> In what ways are the Fundamental Theorem for Line Integrals, Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem similar?

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = yz i + zx j + xy k, S is the surfac

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = y j - z k, S consists of the parabo

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = y i - x j + 2z k, S is the hemisphe

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = x i + y j + z2 k, S is the sphere w

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = -x i - y j + z3 k, S is the part of

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = xy i + yz j + zx k, S is the part o

> Evaluate the surface integral ∫∫S F ∙ dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F (x, y, z) = z i + y j + x k, S is the helicoid

> Evaluate the surface integral. ∫∫S xz dS, S is the boundary of the region enclosed by the cylinder y2 + z2 = 9 and the planes x = 0 and x + y = 5

> Evaluate the surface integral. ∫∫S (x2z + y2z) dS, S is the hemisphere x2 + y2 + z2 = 4, z > 0

> Evaluate the surface integral. ∫∫S y2 dS, S is the part of the sphere x2 + y2 + z2 = 1 that lies above the cone z = √x2 + y2

> State the Divergence Theorem.

> Verify that Stokes’ Theorem is true for the given vector field F and surface S. F (x, y, z) = y i + z j + x k, S is the hemisphere x2 + y2 + z2 = 1, y > 0, oriented in the direction of the positive y-axis

> Evaluate the surface integral. ∫∫S y2z2 dS, S is the part of the cone y = √x2 + z2 given by 0 < y < 5

> Evaluate the surface integral. ∫∫S z2 dS, S is the part of the paraboloid x = y2 + z2 given by 0 < x < 1

> Evaluate the surface integral. ∫∫S y dS, S is the surface z = 2/3 (x3/2 + y3/2), 0 < x < 1, 0 < y < 1

> Evaluate the surface integral. ∫∫S x dS, S is the triangular region with vertices (1, 0, 0), (0, -2, 0), and (0, 0, 4)

> Evaluate the surface integral. ∫∫S xz dS, S is the part of the plane 2x + 2y + z = 4 that lies in the first octant

> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = xy2z2 i + x2yz2 j + x2y2z k

> Evaluate the surface integral. ∫∫S (x2 + y2) dS, S is the surface with vector equation r (u, v) =〈2uv, u2 - v2, u2 + v2〉, u2 + v2 < 1

> Evaluate the surface integral. ∫∫S y dS, S is the helicoid with vector equation r (u, v) =〈u cos v, u sin v, v〉, 0 < u < 1, 0 < v < π

> Evaluate the surface integral. ∫∫S xyz dS, S is the cone with parametric equations x = u cos v, y = u sin v, z = u, 0 < u < 1, 0 < v < π/2

> State Stokes’ Theorem.

> Suppose that f (x, y, z) = g (√x2 + y2 + z2), where t is a function of one variable such that g (2) = 25. Evaluate ∫∫S f (x, y, z) dS, where S is the sphere x2 + y2 + z2 = 4.

> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = xyez i + yzex k

> Find a parametric representation for the surface. The plane that passes through the point (0, -1, 5) and contains the vectors 〈2, 1, 4〉 and 〈-3, 2, 5〉

> Evaluate the surface integral. ∫∫S x dS, S is the surface y = x2 + 4z, 0 < x < 1, 0 < z < 1

> Use Green’s Theorem to evaluate the line integral along the given positively oriented curve. ∫C y3 dx - x3 dy, C is the circle x2 + y2 = 4

> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = 〈arctan (xy), arctan (yz), arctan (zx)〉

> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = 〈ex sin y, ey sin z, ez sin x〉

> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = ln (2y + 3z) i + ln (x + 3z) j + ln (x + 2y) k

> Find the area of the surface. The surface with parametric equations x = u2, y = uv, z = }v², 0 < u < 1,0 < v< 2

> If F = P i + Q j, how do you determine whether F is conservative? What if F is a vector field on R3?

> Find the area of the surface. The helicoid (or spiral ramp) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 <u < 1,

> (a). Show that a constant force field does zero work on a particle that moves once uniformly around the circle x2 + y2 = 1. (b). Is this also true for a force field F (x) = kx, where k is a constant and x = 〈x, y〉?

> Suppose there is a hole in the can of paint in Exercise 45 and 9 lb of paint leaks steadily out of the can during the man’s ascent. How much work is done? Exercise 45: A 160-lb man carries a 25-lb can of paint up a helical staircase that encircles a si

> Find the area of the surface. The part of the surface z = xy that lies within the cylinder x2 + y2 = 1

> Find the area of the surface. The part of the surface z = 4 - 2x2 + y that lies above the triangle with vertices (0, 0), (1, 0), and (1, 1)

> Find the area of the surface. The surface z = 2/3 (x3/2 + y3/2), 0 < x < 1, 0 < y < 1

> Find the area of the surface. The part of the plane x + 2y + 3z = 1 that lies inside the cylinder x2 + y2 = 3

> Find the area of the surface. The part of the plane with vector equation r(и, v) — (и + 0, 2 — Зи, 1 + и — в) that is given by 0 <u < 2, –1<v<1

> Find (a) the curl and (b) the divergence of the vector field. F (x, y, z) = sin yz i + sin zx j + sin xy k

> Find the area of the surface. The part of the plane 3x + 2y + z = 6 that lies in the first octant

> Evaluate the line integral. ∫C F ∙ dr, where F (x, y, z) = ez i + xz j + (x + y) k and C is given by r (t) = t2 i + t3 j - t k, 0 < t < 1

> Find an equation of the tangent plane to the given parametric surface at the specified point. r(u, v) = sin u i + cos u sin vj + sin v k; u = T/6, v = /6 %3D

> Find an equation of the tangent plane to the given parametric surface at the specified point. r(u, v) = u cos vi + u sin vj + v k; u = 1, v = "/3

> Find an equation of the tangent plane to the given parametric surface at the specified point. r(u, v) = u cos vi + u sin vj + v k; u= 1, v = T/3 %3D

> Use Green&acirc;&#128;&#153;s Theorem in the form of Equation 13 to prove Green&acirc;&#128;&#153;s first identity: where D and C satisfy the hypotheses of Green&acirc;&#128;&#153;s Theorem and the appropriate partial derivatives of f and t exist and a

> Find parametric equations for the surface obtained by rotating the curve x = 1/y, y > 1, about the y-axis and use them to graph the surface.

> Find parametric equations for the surface obtained by rotating the curve y = 1/ (1 + x2), -2 < x < 2, about the x-axis and use them to graph the surface.

> Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and F, G are vector fields, then f F, F &acirc;&#136;&#153; G, and F &Atilde;&#151; G are defined by div (&acirc;&#136;&#135;f &Atild

> Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and F, G are vector fields, then f F, F &acirc;&#136;&#153; G, and F &Atilde;&#151; G are defined by div (F &Atilde;&#151; G) = G &ac

> Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and F, G are vector fields, then f F, F &acirc;&#136;&#153; G, and F &Atilde;&#151; G are defined by curl) (f F) = f curl F + (&acirc

> Find a parametric representation for the surface. The part of the sphere x2 + y2 + z2 = 36 that lies between the planes z = 0 and z = 3√3

> Evaluate the line integral. ∫C F ∙ dr, where F (x, y) = xy i + x2 j and C is given by r (t) = sin t i + (1 + t) j, 0 < t < π

> Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and F, G are vector fields, then f F, F &acirc;&#136;&#153; G, and F &Atilde;&#151; G are defined by curl (F + G) = curl F + curl G

> Find a parametric representation for the surface. The part of the sphere x2 + y2 + z2 = 4 that lies above the cone z = √x2 + y2

> Show that any vector field of the form F (x, y, z) = f (y, z) i + g (x, z) j + h (x, y) k is incompressible.

> Find a parametric representation for the surface. The part of the hyperboloid 4x2 - 4y2 - z2 = 4 that lies in front of the yz-plane

> Find a parametric representation for the surface. The plane through the origin that contains the vectors i - j and j - k

> A particle starts at the origin, moves along the x-axis to (5, 0), then along the quarter-circle x2 + y2 = 25, x &gt; 0, y &gt; 0 to the point (0, 5, and then down the y-axis back to the origin. Use Green&acirc;&#128;&#153;s Theorem to find the work done

> Use Green’s Theorem to find the work done by the force F (x, y) = x (x + y) i + xy2 j in moving a particle from the origin along the x-axis to (1, 0), then along the line segment to (0, 1), and then back to the origin along the y-axis.

> Verify Green’s Theorem by using a computer algebra system to evaluate both the line integral and the double integral. P (x, y) = 2x - x3y5, Q (x, y) = x3y8, C is the ellipse 4x2 + y2 = 4

> Determine whether or not the vector field is conservative. If it is conservative, find a function f such that F = ∇f. F (x, y, z) = z cos y i + xz sin y j + x cos y k

> Determine whether or not the vector field is conservative. If it is conservative, find a function f such that F = ∇f. F (x, y, z) = xyz4 i + x2z4 j + 4x2yz3 k

> Evaluate the line integral. ∫C xy dx + y2 dy + yz dz, C is the line segment from (1, 0, -1), to (3, 4, 2)

> Use Green’s Theorem to evaluate ∫C F ∙ dr. (Check the orientation of the curve before applying the theorem.) F (x, y) =〈y - cos y, x sin y〉, C is the circle (x – 3)2 + (y + 4)2 = 4 oriented clockwise

> Use Green’s Theorem to evaluate ∫C F ∙ dr. (Check the orientation of the curve before applying the theorem.) F (x, y) = 〈e^(-x)+ y^2,e^(-y) x^2 〉, C consists of the arc of the curve y = cos x from (-π/2, 0) to (π/2, 0) and the line segment from (π/2, 0

> Use Green’s Theorem to evaluate ∫C F ∙ dr. (Check the orientation of the curve before applying the theorem.) F (x, y) =〈y cos x - xy sin x, xy + x cos x〉, C is the triangle from (0, 0) to (0, 4) to (2, 0) to (0, 0)

> Use Green’s Theorem to evaluate the line integral along the given positively oriented curve. ∫C (1 - y3) dx + (x3 + ey 2) dy, C is the boundary of the region between the circles x2 + y2 = 4 and x2 + y2 = 9

> Use a calculator to evaluate the line integral correct to four decimal places. ∫C F ∙ dr, where F (x, y, z) = yzex i + zxey j + xyez k and r(t) = sin t i + cos t j + tan t k, 0 < t < π/4

> Evaluate the line integral ∫C F ∙ dr, where C is given by the vector function r(t). F (x, y, z) = (x + y2) i + xz j + (y + z) k, r(t) = t2 i + t3 j - 2t k, 0 < t < 2

> Evaluate the line integral, where C is the given curve. ∫C (y + z) dx + (x + z) dy + (x + y) dz, C consists of line segments from (0, 0, 0) to (1, 0, 1) and from (1, 0, 1) to (0, 1, 2)

> Evaluate the line integral, where C is the given curve. ∫C z2 dx + x2 dy + y2 dz, C is the line segment from (1, 0, 0) to (4, 1, 2)

> Evaluate the line integral, where C is the given curve. ∫Cy dx + z dy + x dz, C: x = √t, y = t, z = t2, 1 < t < 4

> Evaluate the line integral, where C is the given curve. ∫C xyeyz dy, C: x = t, y = t2, z = t3, 0 < t < 1

> Evaluate the line integral. ∫C √xy dx + ey dy + xz dz, C is given by r (t) = t4 i + t2 j + t3 k, 0 < t < 1

> How do you use power series to solve a differential equation?

> Evaluate the line integral, where C is the given curve. ∫C (x2 + y2 + z2) ds, C: x = t, y = cos 2t, z = sin 2t, 0 < t < π2

> Evaluate the line integral, where C is the given curve. ∫C xeyz ds, C is the line segment from (0, 0, 0) to (1, 2, 3)

> Evaluate the line integral, where C is the given curve. ∫C y2z ds, C is the line segment from (3, 1, 2) to (1, 2, 5)

> If C is a smooth curve given by a vector function r (t), a (v• dr = v · [r(b) – r(a)]

2.99

See Answer