2.99 See Answer

Question: Reconsider Prob. 9–113. Irreversibilities in the


Reconsider Prob. 9–113. Irreversibilities in the turbine cause the steam quality at the outlet of the turbine to be 70 percent. Determine the isentropic efficiency of the turbine and the thermal efficiency of the cycle.


> The manufacturer of an air conditioner claims a seasonal energy efficiency ratio (SEER) of 16 (Btu/h)/W for one of its units. This unit operates on the normal vapor-compression refrigeration cycle and uses refrigerant-22 as the working fluid. This SEER i

> A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at −30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.25

> A refrigerator uses refrigerant-134a as the working fluid and operates on the vapor-compression refrigeration cycle. The evaporator and condenser pressures are 200 kPa and 1400 kPa, respectively. The isentropic efficiency of the compressor is 88 percent.

> Repeat Prob. 9–151E using appropriate software if ammonia is used in place of refrigerant-134a. Data from Prob. 9-151: A refrigerator uses refrigerant-134a as its working fluid and operates on the ideal vapor compression refrigeration cycle. The refrige

> A refrigerator uses refrigerant-134a as its working fluid and operates on the ideal vapor compression refrigeration cycle. The refrigerant evaporates at 5°F and condenses at 180 psia. This unit serves a 45,000 Btu/h cooling load. Determine the mass flow

> An ideal vapor-compression refrigeration cycle that uses refrigerant-134a as its working fluid maintains a condenser at 800 kPa and the evaporator at −20°C. Determine this system’s COP and the amount of powe

> Repeat Prob. 9–14 using constant specific heats at room Temperature. Data from Prob. 9-14: An air-standard cycle with variable specific heats is executed in a closed system with 0.003 kg of air and consists of the following three processes: 1-2 v = cons

> The temperature of a system drops by 45°F during a cooling process. Express this drop in temperature in K, R, and °C.

> A refrigerator uses refrigerant-134a as the working fluid and operates on the ideal vapor compression refrigeration cycle except for the compression process. The refrigerant enters the evaporator at 120 kPa with a quality of 34 percent and leaves the com

> A refrigerator operates on the ideal vapor-compression refrigeration cycle and uses refrigerant 134a as the working fluid. The condenser operates at 300 psia and the evaporator at 20°F. If an adiabatic, reversible expansion device were available and used

> An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to −5°C. This solution is pumped to various buildings for the purpose of air conditioning. The refrigerant evaporates at −10°C wit

> An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor compression refrigeration cycle is to maintain a space at 22°C while operating its condenser at 1000 kPa. Determine the COP of the system when a temperature d

> An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 20 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F

> A 10-kW cooling load is to be served by operating an ideal vapor-compression refrigeration cycle with its evaporator at 400 kPa and its condenser at 800 kPa. Calculate the refrigerant mass flow rate and the compressor power requirement when refrigerant-1

> The COP of vapor-compression refrigeration cycles improves when the refrigerant is subcooled before it enters the throttling valve. Can the refrigerant be subcooled indefinitely to maximize this effect, or is there a lower limit? Explain.

> It is proposed to use water instead of refrigerant-134a as the working fluid in air-conditioning applications where the minimum temperature never falls below the freezing point. Would you support this proposal? Explain.

> Consider two vapor-compression refrigeration cycles. The refrigerant enters the throttling valve as a saturated liquid at 30°C in one cycle and as subcooled liquid at 30°C in the other one. The evaporator pressure for both cycles is the same. Which cycle

> Does the area enclosed by the cycle on a T-s diagram represent the net work input for the reversed Carnot cycle? How about for the ideal vapor-compression refrigeration cycle?

> A large fraction of the thermal energy generated in the engine of a car is rejected to the air by the radiator through the circulating water. Should the radiator be analyzed as a closed system or as an open system? Explain.

> An air-standard cycle with variable specific heats is executed in a closed system with 0.003 kg of air and consists of the following three processes: 1-2 v = constant heat addition from 95 kPa and 17°C to 380 kPa 2-3 Isentropic expansion to 95 kPa 3-1 P

> In a refrigeration system, would you recommend condensing the refrigerant-134a at a pressure of 0.7 or 1.0 MPa if heat is to be rejected to a cooling medium at 15°C? Why?

> Why is the throttling valve not replaced by an isentropic turbine in the ideal vapor-compression refrigeration cycle?

> Does the ideal vapor-compression refrigeration cycle involve any internal irreversibilities?

> Refrigerant-134a enters the condenser of a steady-flow Carnot refrigerator as a saturated vapor at 90 psia, and it leaves with a quality of 0.05. The heat absorption from the refrigerated space takes place at a pressure of 30 psia. Show the cycle on a T-

> A steady-flow Carnot refrigeration cycle uses refrigerant-134a as the working fluid. The refrigerant changes from saturated vapor to saturated liquid at 60°C in the condenser as it rejects heat. The evaporator pressure is 180 kPa. Show the cycle on a T-s

> Why is the reversed Carnot cycle executed within the saturation dome not a realistic model for refrigeration cycles?

> Why do we study the reversed Carnot cycle even though it is not a realistic model for refrigeration cycles?

> Repeat Prob. 9–131 assuming both the pump and the turbine are isentropic. Data from Prob. 9-131: Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa a

> Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturate

> The temperature of a system rises by 130°C during a heating process. Express this rise in temperature in kelvins.

> A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 15 MPa and 10 kPa. The mass flow rate of steam through the cycle is 12 kg/s. Steam enters both stages of the turbine at 500°C. If the moisture content of the ste

> An air-standard cycle is executed within a closed piston–cylinder system and consists of three processes as follows: 1-2 V = constant heat addition from 100 kPa and 27°C to 850 kPa 2-3 Isothermal expansion until V3 = 7V2 3-1 P = constant heat rejection t

> An ideal reheat Rankine cycle with water as the working fluid operates the inlet of the high pressure turbine at 8000 kPa and 450°C, the inlet of the low-pressure turbine at 500 kPa and 500°C, and the condenser at 10 kPa. Determine the mass flow rate thr

> Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 800 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transfer

> An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and the condenser at 100 kPa. The temperature is 450°C at the entrance of the high-pressure and low-pressure turbines. The mass flo

> Reconsider Prob. 9–125. How much does the thermal efficiency of the cycle change when the temperature at the entrance to the low-pressure turbine is increased to 550°C? Data from Prob. 9-125: Consider a steam power plant that operates on the ideal rehea

> Consider a steam power plant that operates on the ideal reheat Rankine cycle. The plant maintains the boiler at 17.5 MPa, the reheater at 2 MPa, and the condenser at 50 kPa. The temperature is 550°C at the entrance of the high-pressure turbine, and 300°C

> Consider a simple ideal Rankine cycle and an ideal Rankine cycle with three reheat stages. Both cycles operate between the same pressure limits. The maximum temperature is 700°C in the simple cycle and 450°C in the reheat cycle. Which cycle do you think

> How do the following quantities change when a simple ideal Rankine cycle is modified with reheating? Assume the mass flow rate is maintained the same.

> Is there an optimal pressure for reheating the steam of a Rankine cycle? Explain.

> Steam enters a heat exchanger at 300 K. What is the temperature of this steam in °F?

> Show the ideal Rankine cycle with three stages of reheating on a T-s diagram. Assume the turbine inlet temperature is the same for all stages. How does the cycle efficiency vary with the number of reheat stages?

> A binary geothermal power plant uses geothermal water at 160°C as the heat source. The plant operates on the simple Rankine cycle with isobutane as the working fluid. Heat is transferred to the cycle by a heat exchanger in which geothermal liq

> Can any ideal gas power cycle have a thermal efficiency greater than 55 percent when using thermal energy reservoirs at 627°C and 17°C?

> The net work output and the thermal efficiency for the Carnot and the simple ideal Rankine cycles with steam as the working fluid are to be calculated and compared. Steam enters the turbine in both cases at 5 MPa as a saturated vapor, and the condenser

> Reconsider Prob. 9–117. Using appropriate software, determine how much the thermal efficiency of the cycle would change if there were a 50 kPa pressure drop across the boiler. Data from Prob. 9-117: A simple Rankine cycle uses water as the working fluid

> A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450°C. The isentropic efficiency of the turbine is 94 percent, pressure and pump loss

> Reconsider Prob. 9–115E. How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? Data from Prob. 9-115: A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 2 p

> A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 2 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is s

> A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 15 MPa in the boiler and 100 kPa in the condenser. Saturated steam enters the turbine. Determine the work produced by the turbine, the heat transferred i

> Consider a system whose temperature is 18°C. Express this temperature in R, K, and °F.

> Repeat Prob. 9–111 assuming an isentropic efficiency of 85 percent for both the turbine and the pump. Data from Prob. 9-111: Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C

> Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Show the cycle on a T-s diagram with respect to saturation lines, and

> Consider a solar-pond power plant that operates on a simple ideal Rankine cycle with refrigerant 134a as the working fluid. The refrigerant enters the turbine as a saturated vapor at 1.4 MPa and leaves at 0.7 MPa. The mass flow rate of the refrigerant is

> What is the difference between the clearance volume and the displacement volume of reciprocating engines?

> A simple ideal Rankine cycle which uses water as the working fluid operates its condenser at 40°C and its boiler at 250°C. Calculate the work produced by the turbine, the heat supplied in the boiler, and the thermal efficiency of th

> A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 20 kPa in the condenser and a turbine inlet temperature of 700°C. The boiler is sized to provide a steam flow of 50 kg/s. Determi

> A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 3 MPa in the boiler and 30 kPa in the condenser. If the quality at the exit of the turbine cannot be less than 85 percent, what is the maximum thermal ef

> Is it possible to maintain a pressure of 10 kPa in a condenser that is being cooled by river water entering at 20°C?

> The entropy of steam increases in actual steam turbines as a result of irreversibility. In an effort to control entropy increase, it is proposed to cool the steam in the turbine by running cooling water around the turbine casing. It is argued that this w

> Compare the pressures at the inlet and the exit of the boiler for (a) actual and (b) ideal cycles.

> Consider two closed systems A and B. System A contains 3000 kJ of thermal energy at 20°C, whereas system B contains 200 kJ of thermal energy at 50°C. Now the systems are brought into contact with each other. Determine the direction of any heat transfer b

> How do actual vapor power cycles differ from idealized ones?

> Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures. What is the effect of superheating the steam to a higher temperature on;

> Consider a simple ideal Rankine cycle with fixed turbine inlet temperature and condenser pressure. What is the effect of increasing the boiler pressure on;

> Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on;

> Define the following terms related to reciprocating engines: stroke, bore, top dead center, and clearance volume.

> What are the air-standard assumptions?

> Calculate the work produced, in kJ/kg, for the reversible steady-flow process 1–3 shown in Fig. P8–99.

> It is well known that the power consumed by a compressor can be reduced by cooling the gas during compression. Inspired by this, somebody proposes to cool the liquid as it flows through a pump, in order to reduce the power consumption of the pump. Would

> The turbines in steam power plants operate essentially under adiabatic conditions. A plant engineer suggests ending this practice. She proposes to run cooling water through the outer surface of the casing to cool the steam as it flows through the turbine

> In large compressors, the gas is often cooled while being compressed to reduce the power consumed by the compressor. Explain how cooling the gas during a compression process reduces the power consumption.

> Consider an alcohol and a mercury thermometer that read exactly 0°C at the ice point and 100°C at the steam point. The distance between the two points is divided into 100 equal parts in both thermometers. Do you think these thermometers will give exactly

> Reconsider Prob. 8–94. Using appropriate software, investigate the effect of the final pressure on the final mass in the tank as the pressure varies from 450 to 150 kPa, and plot the results. Data from Prob. 8-94: An insulated rigid ta

> An insulated rigid tank contains 4 kg of argon gas at 450 kPa and 30°C. A valve is now opened, and argon is allowed to escape until the pressure inside drops to 200 kPa. Assuming the argon remaining inside the tank has undergone a reversible,

> The well-insulated container shown in Fig. P8–93E is initially evacuated. The supply line contains air that is maintained at 150 psia and 140°F. The valve is opened until the pressure in the container is the same as the press

> Air at 800 kPa and 400°C enters a steady-flow nozzle with a low velocity and leaves at 100 kPa. If the air undergoes an adiabatic expansion process through the nozzle, what is the maximum velocity of the air at the nozzle exit in m/s?

> Oxygen at 300 kPa and 90°C flowing at an average velocity of 3 m/s is expanded in an adiabatic nozzle. What is the maximum velocity of the oxygen at the outlet of this nozzle when the outlet pressure is 120 kPa?

> A container filled with 45 kg of liquid water at 95°C is placed in a 90-m3 room that is initially at 12°C. Thermal equilibrium is established after a while as a result of heat transfer between the water and the air in the room. Usin

> Is it possible for the entropy change of a closed system to be zero during an irreversible process? Explain.

> Five kg of air at 427°C and 600 kPa are contained in a piston–cylinder device. The air expands adiabatically until the pressure is 100 kPa and produces 600 kJ of work output. Assume air has constant specific heats evaluated at 300 K. (a) Determine the en

> Nitrogen at 120 kPa and 30°C is compressed to 600 kPa in an adiabatic compressor. Calculate the minimum work needed for this process in kJ/kg.

> Helium gas is compressed from 90 kPa and 30°C to 450 kPa in a reversible, adiabatic process. Determine the final temperature and the work done, assuming the process takes place (a) in a piston–cylinder device and (b) in a steady-flow compressor.

> What are the ordinary and absolute temperature scales in the SI and the English system?

> Air is compressed in a piston–cylinder device from 90 kPa and 20°C to 600 kPa in a reversible isothermal process. Determine (a) the entropy change of air and (b) the work done.

> Air at 3.5 MPa and 500°C is expanded in an adiabatic gas turbine to 0.2 MPa. Calculate the maximum work that this turbine can produce in kJ/kg.

> Air at 27°C and 100 kPa is contained in a piston–cylinder device. When the air is compressed adiabatically, a minimum work input of 1000 kJ will increase the pressure to 600 kPa. Assuming air has constant specific heats evaluated at 300 K, determine the

> An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains 12 kmol of an ideal gas at 330 kPa and 50°C, and the other side is evacuated. The partition is now removed, and the gas fills the entire tank. Determine

> One kg of air at 200 kPa and 127°C is contained in a piston–cylinder device. Air is now allowed to expand in a reversible, isothermal process until its pressure is 100 kPa. Determine the amount of heat transferred to the air during this expansion.

> A mass of 25 lbm of helium undergoes a process from an initial state of 50 ft3/lbm and 60°F to a final state of 20 ft3/lbm and 240°F. Determine the entropy change of helium during this process, assuming (a) the process is reversible and (b) the process i

> Reconsider Prob. 8–79. Using appropriate software, investigate the effect of varying the polytropic exponent from 1 to 1.4 on the entropy change of the nitrogen. Show the processes on a common P-v diagram. Data from Prob. 8-79: A piston–cylinder device

> When a system is adiabatic, what can be said about the entropy change of the substance in the system?

> A piston–cylinder device contains 0.75 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change o

> An insulated piston–cylinder device initially contains 300 L of air at 120 kPa and 17°C. Air is now heated for 15 min by a 200-W resistance heater placed inside the cylinder. The pressure of air is kept constant during this process. Determine the entropy

> The density of atmospheric air varies with elevation, decreasing with increasing altitude. (a) Using the data given in the table, obtain a relation for the variation of density with elevation, and calculate the density at an elevation of 7000 m. (b) Calc

> Explain why the light-year has the dimension of length.

> A 1.5-m3 insulated rigid tank contains 2.7 kg of carbon dioxide at 100 kPa. Now paddle-wheel work is done on the system until the pressure in the tank rises to 150 kPa. Determine the entropy change of carbon dioxide during this process. Assume constant s

> Which of the two gases—neon or air—has the lower final temperature as it is expanded isentropically from 1000 kPa and 500°C to 100 kPa in a piston–cylinder device?

> Which of the two gases—helium or nitrogen—has the higher final temperature as it is compressed isentropically from 100 kPa and 25°C to 1 MPa in a closed system?

> Air is expanded isentropically from 100 psia and 500°F to 20 psia in a closed system. Determine its final temperature.

2.99

See Answer