2.99 See Answer

Question: Refrigerant-134a at 700 kPa and 120°


Refrigerant-134a at 700 kPa and 120°C enters an adiabatic nozzle steadily with a velocity of 20 m/s and leaves at 400 kPa and 30°C. Determine (a) the exit velocity and (b) the ratio of the inlet to exit area A1/A2.


> The evaporator of a refrigeration cycle is basically a heat exchanger in which a refrigerant is evaporated by absorbing heat from a fluid. Refrigerant-22 enters an evaporator at 200 kPa with a quality of 22 percent and a flow rate of 2.65 L/h. R-22 leave

> Refrigerant-134a at 1 MPa and 90°C is to be cooled to 1 MPa and 30°C in a condenser by air. The air enters at 100 kPa and 27°C with a volume flow rate of 600 m3/min and leaves at 95 kPa and 60°C. Determine the

> An open feedwater heater heats the feedwater by mixing it with hot steam. Consider an electric power plant with an open feedwater heater that mixes 0.1 lbm/s of steam at 10 psia and 200°F with 2.0 lbm/s of feedwater at 10 psia and 100°F to produce 10 psi

> Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a crossflow heat exchanger before it enters the furnace. Air enters the heat exchanger at 95 kPa and 20°C at a rate of 0.6 m3/s. The combustion gases

> Consider the system shown in Fig. P2–57. If a change of 0.7 kPa in the pressure of air causes the brine–mercury interface in the right column to drop by 5 mm in the brine level in the right column while the pressure in

> Steam is to be condensed on the shell side of a heat exchanger at 75°F. Cooling water enters the tubes at 50°F at a rate of 45 lbm/s and leaves at 65°F. Assuming the heat exchanger to be well insulated, determine the rate of heat transfer in the heat exc

> A garden hose attached with a nozzle is used to fill a 20-gal bucket. The inner diameter of the hose is 1 in and it reduces to 0.5 in at the nozzle exit. If the average velocity in the hose is 8 ft/s, determine (a) the volume and mass flow rates of water

> Cold water (cp = 4.18 kJ/kg·°C) leading to a shower enters a thin-walled double-pipe counterflow heat exchanger at 15°C at a rate of 0.60 kg/s and is heated to 45°C by hot water (cp = 4.19 kJ/kg·°C) that enters at 100°C at a rate of 3 kg/s. Determine the

> Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. If both streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream.

> A hot-water stream at 80°C enters a mixing chamber with a mass flow rate of 0.5 kg/s where it is mixed with a stream of cold water at 20°C. If it is desired that the mixture leave the chamber at 42°C, determine the mass f

> Hot and cold streams of a fluid are mixed in a rigid mixing chamber. The hot fluid flows into the chamber at a mass flow rate of 5 kg/s with an energy in the amount of 150 kJ/kg. The cold fluid flows into the chamber with a mass flow rate of 15 kg/s and

> Refrigerant-134a at 700 kPa, 70°C, and 8 kg/min is cooled by water in a condenser until it exists as a saturated liquid at the same pressure. The cooling water enters the condenser at 300 kPa and 15°C and leaves at 25°C at the same pressure. Determine th

> When two fluid streams are mixed in a mixing chamber, can the mixture temperature be lower than the temperature of both streams? Explain.

> Consider a steady-flow heat exchanger involving two different fluid streams. Under what conditions will the amount of heat lost by one fluid be equal to the amount of heat gained by the other?

> Consider a steady-flow mixing process. Under what conditions will the energy transported into the control volume by the incoming streams be equal to the energy transported out of it by the outgoing stream?

> The hydraulic lift in a car repair shop has an output diameter of 30 cm and is to lift cars up to 2500 kg. Determine the fluid gage pressure that must be maintained in the reservoir.

> Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. Determine the temperature and internal energy changes across the valve.

> Reconsider Prob. 6–59. Using appropriate software, investigate the effect of the exit pressure of steam on the exit temperature after throttling. Let the exit pressure vary from 6 to 1 MPa. Plot the exit temperature of steam against the exit pressure, an

> Air enters a 16-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. Air is heated as it flows, and it leaves the pipe at 180 kPa and 40°C. Determine (a) the volume flow rate of air at the inlet, (b) the mass flow

> A well-insulated valve is used to throttle steam from 8 MPa and 350°C to 2 MPa. Determine the final temperature of the steam.

> An adiabatic capillary tube is used in some refrigeration systems to drop the pressure of the refrigerant from the condenser level to the evaporator level. The R-134a enters the capillary tube as a saturated liquid at 50°C and leaves at –20°C. Determine

> A saturated liquid–vapor mixture of water, called wet steam, in a steam line at 1500 kPa is throttled to 50 kPa and 100°C. What is the quality in the steam line?

> Refrigerant-134a is throttled from the saturated liquid state at 700 kPa to a pressure of 160 kPa. Determine the temperature drop during this process and the final specific volume of the refrigerant.

> Someone claims, based on temperature measurements, that the temperature of a fluid rises during a throttling process in a well-insulated valve with negligible friction. How do you evaluate this claim? Does this process violate any thermodynamic laws?

> During a throttling process, the temperature of a fluid drops from 30 to –20°C. Can this process occur adiabatically?

> Would you expect the temperature of air to drop as it undergoes a steady-flow throttling process? Explain.

> Consider a double-fluid manometer attached to an air pipe shown in Fig. P2–55. If the specific gravity of one fluid is 13.55, determine the specific gravity of the other fluid for the indicated absolute pressure of air. Take the atmosph

> Why are throttling devices commonly used in refrigeration and air-conditioning applications?

> A portion of the steam passing through a steam turbine is sometimes removed for the purposes of feedwater heating as shown in Fig. P6–51. Consider an adiabatic steam turbine with 12.5 MPa and 550°C steam entering at a rate of

> Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compresso

> The ventilating fan of the bathroom of a building has a volume flow rate of 30 L/s and runs continuously. If the density of air inside is 1.20 kg/m3, determine the mass of air vented out in one day.

> Air is compressed by an adiabatic compressor from 100 kPa and 20°C to 1.8 MPa and 400°C. Air enters the compressor through a 0.15-m2 opening with a velocity of 30 m/s. It exits through a 0.08-m2 opening. Calculate the mass flow rate of air and the requir

> Steam flows steadily into a turbine with a mass flow rate of 26 kg/s and a negligible velocity at 6 MPa and 600°C. The steam leaves the turbine at 0.5 MPa and 200°C with a velocity of 180 m/s. The rate of work done by the steam in the turbine is measured

> Carbon dioxide enters an adiabatic compressor at 100 kPa and 300 K at a rate of 0.5 kg/s and leaves at 600 kPa and 450 K. Neglecting kinetic energy changes, determine (a) the volume flow rate of the carbon dioxide at the compressor inlet and (b) the powe

> Steam enters an adiabatic turbine at 8 MPa and 500°C at a rate of 3 kg/s and leaves at 20 kPa. If the power output of the turbine is 2.5 MW, determine the temperature of the steam at the turbine exit. Neglect kinetic energy changes.

> Steam flows steadily through a turbine at a rate of 45,000 lbm/h, entering at 1000 psia and 900°F and leaving at 5 psia as saturated vapor. If the power generated by the turbine is 4 MW, determine the rate of heat loss from the steam.

> Reconsider Prob. 6–43. Using appropriate software, investigate the effect of the turbine exit pressure on the power output of the turbine. Let the exit pressure vary from 10 to 200 kPa. Plot the power output against the exit pressure, a

> Consider a U-tube whose arms are open to the atmosphere. Now water is poured into the U-tube from one arm, and light oil (ρ = 790 kg/m3) from the other. One arm contains 70-cm-high water, while the other arm contains both fluids with an oil-to

> Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C, and 80 m/s, and the exit conditions are 30 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. Determine (a) th

> Refrigerant-134a enters a compressor at 180 kPa as a saturated vapor with a flow rate of 0.35 m3/min and leaves at 900 kPa. The power supplied to the refrigerant during the compression process is 2.35 kW. What is the temperature of R-134a at the exit of

> Air enters a gas turbine at 150 psia and 700°F and leaves at 15 psia and 100°F. Determine the inlet and outlet volume flow rates when the mass flow rate through this turbine is 5 lbm/s.

> Air is expanded from 1000 kPa and 600°C at the inlet of a steady-flow turbine to 100 kPa and 200°C at the outlet. The inlet area and velocity are 0.1 m2 and 30 m/s, respectively, and the outlet velocity is 10 m/s. Determine the mass flow rate and outlet

> Consider a device with one inlet and one outlet. If the volume flow rates at the inlet and at the outlet are the same, is the flow through this device necessarily steady? Why?

> Somebody proposes the following system to cool a house in the summer: Compress the regular outdoor air, let it cool back to the outdoor temperature, pass it through a turbine, and discharge the cold air leaving the turbine into the house. From a thermody

> Will the temperature of air rise as it is compressed by an adiabatic compressor? Why?

> Consider an adiabatic turbine operating steadily. Does the work output of the turbine have to be equal to the decrease in the energy of the steam flowing through it?

> Air at 80 kPa, 27°C, and 220 m/s enters a diffuser at a rate of 2.5 kg/s and leaves at 42°C. The exit area of the diffuser is 400 cm2. The air is estimated to lose heat at a rate of 18 kJ/s during this process. Determine (a) the exit velocity and (b) the

> Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it passes through the diffuser. If the exit area is 80 percent

> The maximum blood pressure in the upper arm of a healthy person is about 120 mmHg. If a vertical tube open to the atmosphere is connected to the vein in the arm of the person, determine how high the blood will rise in the tube. Take the density of the bl

> Air at 13 psia and 65°F enters an adiabatic diffuser steadily with a velocity of 750 ft/s and leaves with a low velocity at a pressure of 14.5 psia. The exit area of the diffuser is 3 times the inlet area. Determine (a) the exit temperature an

> Air at 80 kPa and 127°C enters an adiabatic diffuser steadily at a rate of 6000 kg/h and leaves at 100 kPa. The velocity of the airstream is decreased from 230 to 30 m/s as it passes through the diffuser. Find (a) the exit temperature of the air and (b)

> Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s, and leaves at 375°C and 400 kPa while losing heat at a rate of 25 kW. For an inlet area of 800 cm2, determine the velocity and the volume flow rate of the steam a

> Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500°C with a mass flow rate of 6000 kg/h and leaves at 100 kPa and 450 m/s. The inlet area of the nozzle is 40 cm2. Determine (a) the inlet velocity and (b) the exit temperature.

> Does the amount of mass entering a control volume have to be equal to the amount of mass leaving during an unsteady flow process?

> Air at 600 kPa and 500 K enters an adiabatic nozzle that has an inlet-to-exit area ratio of 2:1 with a velocity of 120 m/s and leaves with a velocity of 380 m/s. Determine (a) the exit temperature and (b) the exit pressure of the air.

> Air enters a nozzle steadily at 50 psia, 140°F, and 150 ft/s and leaves at 14.7 psia and 900 ft/s. The heat loss from the nozzle is estimated to be 6.5 Btu/lbm of air flowing. The inlet area of the nozzle is 0.1 ft2. Determine (a) the exit temperature of

> The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the engine compressor without any work or heat interactions. Calculate the velocity at the exit of a diffuser when air at 100 kPa and 30°C enters it with a veloci

> The stators in a gas turbine are designed to increase the kinetic energy of the gas passing through them adiabatically. Air enters a set of these nozzles at 300 psia and 700°F with a velocity of 80 ft/s and exits at 250 psia and 645°F. Calculate the velo

> Blood pressure is usually measured by wrapping a closed air-filled jacket equipped with a pressure gage around the upper arm of a person at the level of the heart. Using a mercury manometer and a stethoscope, the systolic pressure (the maximum pressure w

> The kinetic energy of a fluid increases as it is accelerated in an adiabatic nozzle. Where does this energy come from?

> A diffuser is an adiabatic device that decreases the kinetic energy of the fluid by slowing it down. What happens to this lost kinetic energy?

> Can a steady-flow system involve boundary work?

> How is a steady-flow system characterized?

> Steam is leaving a pressure cooker whose operating pressure is 20 psia. It is observed that the amount of liquid in the cooker has decreased by 0.6 gal in 45 minutes after the steady operating conditions are established, and the cross-sectional area of t

> Refrigerant-134a enters the compressor of a refrigeration system as saturated vapor at 0.14 MPa and leaves as superheated vapor at 0.8 MPa and 60°C at a rate of 0.06 kg/s. Determine the rates of energy transfers by mass into and out of the compressor. As

> Define mass and volume flow rates. How are they related to each other?

> A house is maintained at 1 atm and 24°C, and warm air inside a house is forced to leave the house at a rate of 90 m3/h as a result of outdoor air at 5°C infiltrating into the house through the cracks. Determine the rate of net energy loss of the house du

> An air compressor compresses 6 L of air at 120 kPa and 20°C to 1000 kPa and 400°C. Determine the flow work, in kJ/kg, required by the compressor.

> How do the energies of a flowing fluid and a fluid at rest compare? Name the specific forms of energy associated with each case.

> Repeat Prob. 2–50E by replacing air with oil with a specific gravity of 0.69. Data from Prob 2-50: The pressure in a natural gas pipeline is measured by the manometer shown in Fig. P2–50E with one of the arms open to

> An adiabatic air compressor is to be powered by a direct-coupled adiabatic steam turbine that is also driving a generator. Steam enters the turbine at 12.5 MPa and 500°C at a rate of 25 kg/s and exits at 10 kPa and a quality of 0.92. Air enter

> In a single-flash geothermal power plant, geothermal water enters the flash chamber (a throttling valve) at 230°C as a saturated liquid at a rate of 50 kg/s. The steam resulting from the flashing process enters a turbine and leaves at 20 kPa w

> A pressure cooker is a pot that cooks food much faster than ordinary pots by maintaining a higher pressure and temperature during cooking. The pressure inside the pot is controlled by a pressure regulator (the petcock) that keeps the pressure at a consta

> A piston–cylinder device initially contains 1.2 kg of air at 700 kPa and 200°C. At this state, the piston is touching on a pair of stops. The mass of the piston is such that 600-kPa pressure is required to move it. A valve at

> A piston–cylinder device initially contains 2 kg of refrigerant-134a at 800 kPa and 80°C. At this state, the piston is touching on a pair of stops at the top. The mass of the piston is such that a 500-kPa pressure is required to move it. A valve at the b

> A liquid R-134a bottle has an internal volume of 0.0015 m3. Initially it contains 0.55 kg of R-134a (saturated mixture) at 26°C. A valve is opened and R-134a vapor only (no liquid) is allowed to escape slowly such that temperature remains constant until

> It is proposed to have a water heater that consists of an insulated pipe of 7.5-cm diameter and an electric resistor inside. Cold water at 20°C enters the heating section steadily at a rate of 24 L/min. If water is to be heated to 48°C, determine (a) the

> Reconsider Prob. 6–159. Using appropriate software, investigate the effects of turbine exit area and turbine exit pressure on the exit velocity and power output of the turbine. Let the exit pressure vary from 10 to 50 kPa (with the same quality), and let

> What are the different mechanisms for transferring energy to or from a control volume?

> Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent. A heat loss of 20 kJ/kg occurs during the process. The inlet area of the turbine is 150 cm2, and the exit area is 1400 cm2. D

> The pressure in a natural gas pipeline is measured by the manometer shown in Fig. P2–50E with one of the arms open to the atmosphere where the local atmospheric pressure is 14.2 psia. Determine the absolute pressure in the pipeline.

> What is the driving force for (a) heat transfer, (b) electric current, and (c) fluid flow?

> Reconsider Prob. 6–157. Using appropriate software, investigate the effect of the inlet temperature of cold water on the energy saved by using the low-flow shower head. Let the inlet temperature vary from 10°C to 20°C. Plot the electric energy savings ag

> The maximum flow rate of standard shower heads is about 3.5 gpm (13.3 L/min) and can be reduced to 2.75 gpm (10.5 L/min) by switching to low-flow shower heads that are equipped with flow controllers. Consider a family of four, with each person taking a 5

> A building with an internal volume of 400 m3 is to be heated by a 30-kW electric resistance heater placed in the duct inside the building. Initially, the air in the building is at 14°C, and the local atmospheric pressure is 95 kPa. The buildin

> An air-conditioning system requires airflow at the main supply duct at a rate of 130 m3/min. The average velocity of air in the circular duct is not to exceed 8 m/s to avoid excessive vibration and pressure drops. Assuming the fan converts 80 percent of

> Consider a large classroom on a hot summer day with 150 students, each dissipating 60 W of sensible heat. All the lights, with 6.0 kW of rated power, are kept on. The room has no external walls, and thus heat gain through the walls and the roof is neglig

> Determine the rate of sensible heat loss from a building due to infiltration if the outdoor air at –5°C and 95 kPa enters the building at a rate of 60 L/s when the indoors is maintained at 25°C.

> The ventilating fan of the bathroom of a building has a volume flow rate of 30 L/s and runs continuously. The building is located in San Francisco, California, where the average winter temperature is 12.2°C, and it is maintained at 22Â&d

> It is well established that indoor air quality (IAQ) has a significant effect on general health and productivity of employees at a workplace. A study showed that enhancing IAQ by increasing the building ventilation from 5 cfm (cubic feet per minute) to 2

> Steam at 80 psia and 400°F is mixed with water at 60°F and 80 psia steadily in an adiabatic device. Steam enters the device at a rate of 0.05 lbm/s, while the water enters at 1 lbm/s. Determine the temperature of the mixture leaving this device when the

> Refrigerant-134a enters a 28-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. The refrigerant gains heat as it flows and leaves the pipe at 180 kPa and 40°C. Determine (a) the volume flow rate of the refrigerant at the inlet, (b) t

> Repeat Prob. 2–48 for a differential mercury height of 45 mm. Data from Prob 2-48: A mercury manometer (ρ = 13,600 kg/m3) is connected to an air duct to measure the pressure inside. The difference in the manometer levels is

> Repeat Prob. 6–148 for a copper wire (ρ = 8950 kg/m3 and cp = 0.383 kJ/kg·°C). Data from Prob. 6-148: Long aluminum wires of diameter 5 mm (ρ = 2702 kg/m3and cp = 0.896 kJ/kgÂ&middot

> Long aluminum wires of diameter 5 mm (ρ = 2702 kg/m3and cp = 0.896 kJ/kg·°C) are extruded at a temperature of 350°C and are cooled to 50°C in atmospheric air at 25°C. If the wire is ext

> In a dairy plant, milk at 4°C is pasteurized continuously at 72°C at a rate of 20 L/s for 24 h a day and 365 days a year. The milk is heated to the pasteurizing temperature by hot water heated in a natural-gas-fired boiler that has

> A glass bottle washing facility uses a well-agitated hot water bath at 50°C that is placed on the ground. The bottles enter at a rate of 450 per minute at an ambient temperature of 20°C and leave at the water temperature. Each bottle has a mass of 150 g

> A refrigeration system is being designed to cool eggs (ρ = 67.4 lbm/ft3 and cp = 0.80 Btu/lbm·°F) with an average mass of 0.14 lbm from an initial temperature of 90°F to a final average temperature of 50°F by air at 34°F at a rate of 3000 eggs per hour.

> Repeat Prob. 6–143 assuming that the heat gain of the chiller is negligible. Data from Prob. 6-143: Chickens with an average mass of 2.2 kg and average specific heat of 3.54 kJ/kg·°C are to be cooled by chilled water that enters a continuous-flow-type i

> Chickens with an average mass of 2.2 kg and average specific heat of 3.54 kJ/kg·°C are to be cooled by chilled water that enters a continuous-flow-type immersion chiller at 0.5°C. Chickens are dropped into the chiller at a uniform temperature of 15°C at

2.99

See Answer