2.99 See Answer

Question: Viewing the database in Appendix A as


Viewing the database in Appendix A as a random sample from a much larger population of employees:
a. Find the 95% one-sided confidence interval for the population mean annual salary specifying that salaries are at least some amount.
b. Find the 99% one-sided confidence interval for part a.
c. Find the 95% one-sided confidence interval for the population mean experience specifying that experience is at least some amount.
d. Find the 99% one-sided confidence interval for part c.


> Is there more that Domestic-Powerco could have done with its payment and reward system to encourage/reward appropriate knowledge sharing behaviours among engineers?

> Is the ratio of managers to engineers adequate, or too high? Reflect on the benefits and disadvantages of either increasing or decreasing this ratio, for both managers and engineers. Is changing this ratio significantly likely to have any impact on the

> What are the antecedents and outcomes of engagement described in this case?

> What role do you think the different parties in the SSC (e.g. HR, senior management, line management, colleagues) play in supporting employee engagement? What activities might they undertake to carry out these roles?

> Why might it be either beneficial or detrimental for the firm to launch an initiative to increase levels of engagement with the local (SSC) operations, potentially challenging the already high organisation engagement with the global retailer brand?

> How do you think the location of this firm in India is affecting how engagement is managed, compared to if this firm were located in a developed Western economy?

> Senior management would like to receive a report from you explaining the following: (a) What questions you would include in your employee engagement survey? (b) Why you think these questions are important? (c) Any challenges you would anticipate in gaini

> What job resources and job demands can be identified in this case that may be contributing to engagement levels?

> What do you think will be the effect on the engagement of remaining employees when their colleagues are laid off involuntarily across the organisation due to downsizing requirements? How might any negative effects be minimised?

> How might a firm such as this increase engagement amongst employees when there is no room to offer additional financial incentives?

> As the firm transforms its focus from multiple product brands to a single global corporate brand, how might it go about ensuring levels of employee engagement are maintained or increased at both work and organisation level?

> Does a strategy of double-breasting (union and non-union) participation serve managerial or worker interests?

> In the BritCo case, to what extent would you say that NER forms of employee representation are deep or shallow?

> What implications are there from the BritCo case for the meaning of employee participation?

> Given what has been described at BritCo, should trade unions be worried about the introduction of employee information and consultation regulations?

> Imagine you have been asked for your professional advice and opinion from the BritCo Ireland Board of Directors. They would like you to make a short presentation about the feasibility of a strategy of double-breasting voice in which one or two plants are

> Do you think that senior managers are using the participation channels as a form of management control or are they trying to provide employee autonomy and discretion for the benefit of employees?

> Why do you think the employees have been reluctant to speak up and to make suggestions to improve DairyProductsInc?

> What should the senior managers do to ensure that the new roster committee is successful and a win-win for both management and employees?

> How could the lean manufacturing process be implemented better so that employees and line managers are more satisfied working in autonomous teams?

> How would you describe employee participation at Peninsula Lodge in terms of the framework explained in the chapter (e.g. depth, level, scope, form)?

> Why do you think some employees feel negative about the move to more formal types of employee participation initiatives at Peninsula Lodge?

> From reading the Peninsula Lodge case, why is it difficult to establish a relationship between employee participation and organisational performance?

> Do you think the size of the Peninsula Lodge is an important factor in the nature of employee participation?

> What are the practical implications arising from the forms of dialogue evident in this case?

> What, if anything, should have been done differently? Why?

> Under what circumstances, if any, might it be appropriate to use communicative practices and forms of language to constrain employees’ influence on change processes?

> What should Annie do?

> What, if any, insights does Lewin’s change model provide for this case?

> Based on analysis of data from last year, you have found that 40% of the people who came to your store had not been there before. While some just came to browse, 30% of people who came to your store actually bought something. However, of the people who h

> Your marketing department has surveyed potential customers and found that, (1) 27% read the trade publication Industrial Chemistry, (2) 18% have bought your products, and(3) of those who read Industrial Chemistry, 63% have never bought your products. a.

> Your company sends out bids on a variety of projects. Some (actually 30% of all bids) involve a lot of work in preparing bids for projects you are likely to win, while the others are quick calculations sent in even though you feel it is unlikely that you

> With your typical convenience store customer, there is a 0.23 probability of buying gasoline. The probability of buying groceries is 0.76 and the conditional probability of buying groceries given that they buy gasoline is 0.85. a. Find the probability th

> Your firm is interested in learning more about customers’ purchasing patterns on its Web site and how they relate to the frequency of online site visits. The probability that a customer’s visit will result in a purchase is 0.35. The probability that a cu

> Test to see if the average annual salary for training level A differs significantly from that for levels Band C combined.

> Test to see if the population mean age for men differs from that for women.

> Test to see if the population mean annual salary for men differs from that for women.

> Test to see if the gender ratio differs significantly from 50%.

> You would like to claim that the population has significantly more than five years of experience, on average. Can you support this claim?

> Is Jones correct? That is, using the more complete data set, is it true that Jones has the lowest defect rate overall? Are Jones’s percentages correct overall (i.e., combining domestic and overseas production)?

> Is the average annual salary significantly different from $40,000?

> Viewing the database in Appendix A as a random sample from a much larger population, consider the age values. a. Find the 95% confidence interval. b. Find the 90% confidence interval.

> Repeat exercise 1, parts b and c, using a90% confidence interval. Is the population mean annual salary in the interval? Data from exercise 1: View this database as a population. Consider the following sample of five employee numbers from this database:

> Now look at the entire population of salaries, which you can not usually do in real life. a. Find the population mean and standard deviation, and compare them to the sample estimates from the previous problem. b. Draw a graph for this situation in the st

> Viewing the database in Appendix A as a random sample from the idealized population of potential employees you might hire next: a. Find the 95% prediction interval for the experience of your next hire. Why is this interval so much wider than the confiden

> View this database as a population. Consider the following sample of five employee numbers from this database: 24, 54, 17, 34, and 53. a. Find the average, standard deviation, and standard error for annual salary based on this sample. b. Find the 95% con

> What assumptions are required concerning the distribution of each population?

> Which assumption helps the data be representative of the population?

> Name and interpret the two sources of variation in the one-way analysis of variance.

> Why can the standard error of the average difference be a different number depending on which samples you are comparing?

> What kinds of additional terms are needed to include seasonal behavior in advanced ARIMA models?

> Are statistical estimates always correct? If not, what else will you need (in addition to the estimated values) in order to use them effectively?

> For each of the following, say whether it is stationary or non stationary: a. Autoregressive process. b. Random walk. c. Moving-average process. d. ARMA process.

> Distinguish stationary and non stationary time-series behavior.

> Do exercise 8 using the binomial proportion p in place of X. Data from exercise 8: Continuing with the sample from exercise 2: a.* Find the binomial X for the gender variable (counting the number of females) and interpret it. b.* Find the standard erro

> a. How is a time series different from cross-sectional data? b. What information is lost when you look at a histogram for time-series data?

> Should you assume that everyone who reads your conclusion is already familiar with all of the details of the analysis and methods section?

> Is it OK to repeat material in the introduction that already appeared in the executive summary?

> How can you use the executive summary and introduction to reach a diverse audience with limited time?

> How can an outline help you?

> How can you find synonyms for a given word? Why might you want to?

> How would you check the meaning of a word to be sure that you are using it correctly?

> What is the relationship between the outline and the finished report?

> What can a statistical model help you accomplish? Which basic activity of statistics can help you choose an appropriate model for your data?

> When is the best time to write the introduction and executive summary, first or last? Why?

> Continuing with the sample from exercise 2: a.* Find the binomial X for the gender variable (counting the number of females) and interpret it. b.* Find the standard error of X and interpret it. c. Find the population mean for the binomial X. d. How far i

> What can you do to help those in your audience who are short of time?

> What is the primary purpose of writing a report?

> Describe the two measures that tell you how helpful a multiple regression analysis is.

> Why should variables measured in the same basic units be transformed in the same way?

> Which activity (correlation or regression analysis) is involved in each of the following situations? a. Investigating to see whether there is any measurable connection between advertising expenditures and sales. b. Developing a system to predict portfoli

> Distinguish correlation and regression analysis.

> What is extrapolation? Why is it especially troublesome?

> a. Which is usually better, a lower or a higher value for R2? b. Which is better, a lower or a higher value for Se?

> For each of the following situations tell whether the predicted value or the residual would be most useful. a. For budgeting purposes you need to know what number to place under “cost of goods sold” based on the expected sales figure for the next quarter

> What can be done with multivariate data?

> Do exercise 3 using the experiences instead of the salaries. Data from exercise 3: Continuing with the sample from the preceding exercise: a. Find the population mean for salary. (Note: In real life, you usually cannot find the population mean. We are

> Are Kellerman’s conclusions correct?

> What is new and different about analysis of bivariate data compared to univariate data?

> Suppose you learn that the p- value for a hypothesis test is equal to 0.0217. What can you say about the result of this test?

> What standard error would you use to test whether a new observation came from the same population as a sample? (Give both its name and the formula.)

> Suppose you have an estimator and would like to test whether or not the population mean value equals 0. What do you need in addition to the estimated value?

> What p-value statement is associated with each of the following outcomes of a hypothesis test? a. Not significant. b. Significant. c. Highly significant. d. Very highly significant.

> a. What confidence levels other than 95% are in common use? b. What would you do differently to compute a 99% confidence interval instead of a 95% interval? c. Which is larger, a two-sided 90% confidence interval or a two-sided 95% confidence interval?

> Why are critical t values generally larger than1.960 for a two-sided 95% confidence interval?

> Why is it correct to say, “We are 95% sure that the population mean is between $15.85 and $19.36” but not proper to say, “The probability is 0.95 that the population mean is between $15.85 and $19.36”?

> Which fact about a normal distribution leads to the factor 2 (or 1.960) in the approximate confidence interval statement?

> What does a confidence interval tell you about the population that an estimated value alone does not?

> Do exercise 3 using the ages instead of the salaries. Data from exercise 3: Continuing with the sample from the preceding exercise: a. Find the population mean for salary. (Note: In real life, you usually cannot find the population mean. We are peeking

> In what way do bivariate data represent more than just two separate univariate data sets?

> In what important way does statistical inference go beyond summarizing the data?

> a. What is the sampling distribution of a statistic? b. What is the standard deviation of a statistic?

> a. What is a statistic? b. What is a parameter?

> What is a frame? What is its role in sampling?

> What do the standard errors Sx and Sp indicate for a binomial situation?

> a. What is the complement of an event? b. What is the probability of the complement of an event?

> What are mutually exclusive events?

> a. What is an event? b. Can a random experiment have more than one event of interest?

> a. What is an outcome? b. Must the outcome be a number?

> Do exercise 2 using the experiences instead of the salaries. Data from exercise 2: Draw a random sample without replacement of 10 employees, using the table of random digits, starting in row 23, column 7. a.* List the employee numbers for your sample.

2.99

See Answer