2.99 See Answer

Question: Relate to the function whose graph is

Relate to the function whose graph is sketched in Fig. 12.
Relate to the function whose graph is sketched in Fig. 12.


For what values of x is f (x) ≤ 0?

For what values of x is f (x) ≤ 0?





Transcribed Image Text:

(2, 3) y = f(x) + 1 + 5 (7, –1)


> Exercises 43–46 relate to Fig. 13. When a drug is injected into a person’s muscle tissue, the concentration y of the drug in the blood is a function of the time elapsed since the injection. The graph of a typical time&

> Let f (x) = x6, g(x) = x / 1 - x, and h(x) = x3 - 5x2 + 1. Calculate the following functions. g (h(t))

> Find an equation of the given line. Slope is 2; (1, -2) on line

> Find an equation of the given line. Slope is -1; (7, 1) on line

> Find the slopes and y-intercepts of the following lines. 4x + 9y = -1

> Find the slopes and y-intercepts of the following lines. y = x/7 - 5

> Find the slopes and y-intercepts of the following lines. y = 6

> Determine the domains of the following functions. f (x) = 1 / x(x + 3)

> Let f (x) = [1/(x + 1)] - x2. Evaluate f (a + 1).

> Let f (x) = x2 - 2. Evaluate f (a - 2).

> Let f (x) = 2x + 3x2. Evaluate f (0), f (- 1/4), and f (1/√2).

> Let f (x) = x3 +1 /x. Evaluate f (1), f (3), f (-1), f (- 12), and f (√2).

> Let f (x) = x6, g(x) = x / 1 - x, and h(x) = x3 - 5x2 + 1. Calculate the following functions. g (f (x))

> Exercises 43–46 relate to Fig. 13. When a drug is injected into a person’s muscle tissue, the concentration y of the drug in the blood is a function of the time elapsed since the injection. The graph of a typical time&

> Suppose that $7000 is deposited in a savings account that pays a rate of interest r per annum, compounded annually, for 20 years. (a) Express the account balance A(r) as a function of r. (b) Calculate the account balance for r = .07 and r = .12.

> Suppose that $15,000 is deposited in a savings account that pays a rate of interest r per annum, compounded annually, for 10 years. (a) Express the account balance A(r) as a function of r. (b) Calculate the account balance for r = 0.04 and r = 0.06

> Suppose that $7000 is deposited in a savings account that pays 9% per annum, compounded biannually, for t years. (a) Express the account balance A(t) as a function of t, the number of years that the principal has been in the account. (b) Calculate the ac

> Suppose that $15,000 is deposited in a savings account that pays 4% per annum, compounded monthly, for t years. (a) Express the account balance A(t) as a function of t, the number of years that the principal has been in the account. (b) Calculate the acc

> Use the laws of exponents to simplify the algebraic expressions. 3√x (8x2/3)

> Use the laws of exponents to simplify the algebraic expressions. x3/2/ √x

> Use the laws of exponents to simplify the algebraic expressions. xy3 / x-5y6

> Use the laws of exponents to simplify the algebraic expressions. (√(x + 1))4

> The revenue R(x) (in thousands of dollars) that a company receives from the sale of x thousand units is given by R(x) = 5x - x2. The sales level x is in turn a function f (d) of the number d of dollars spent on advertising, where Express the revenue as

> Let f (x) = x6, g(x) = x / 1 - x, and h(x) = x3 - 5x2 + 1. Calculate the following functions. h(g(x))

> The population of a city is estimated to be 750 + 25t + .1t2 thousand people t years from the present. Ecologists estimate that the average level of carbon monoxide in the air above the city will be 1 + .4x ppm (parts per million) when the population is

> Exercises 43–46 relate to Fig. 13. When a drug is injected into a person’s muscle tissue, the concentration y of the drug in the blood is a function of the time elapsed since the injection. The graph of a typical time&

> Simplify (100)3/2 and (.001)1/3.

> Simplify (81)3/4, 85/3, and (.25)-1.

> Let f (x) = x2 - 2x + 4, g(x) = 1/x2, and h(x) = 1/(√x - 1). Determine the following functions. h(f (x))

> Let f (x) = x2 - 2x + 4, g(x) = 1/x2, and h(x) = 1/(√x - 1). Determine the following functions. f (h(x))

> Let f (x) = x2 - 2x + 4, g(x) = 1/x2, and h(x) = 1/(√x - 1). Determine the following functions. h(g(x))

> Let f (x) = x2 - 2x + 4, g(x) = 1/x2, and h(x) = 1/(√x - 1). Determine the following functions. g(h(x))

> Let f (x) = x2 - 2x + 4, g(x) = 1/x2, and h(x) = 1/(√x - 1). Determine the following functions. g(f (x))

> Let f (x) = x2 - 2x + 4, g(x) = 1/x2, and h(x) = 1/(√x - 1). Determine the following functions. f (g(x))

> Let f (x) = x6, g(x) = x / 1 - x, and h(x) = x3 - 5x2 + 1. Calculate the following functions. h (f (t))

> Let f (x) = x/(x2 - 1), g(x) = (1 - x)/(1 + x), and h(x) = 2/(3x + 1). Express the following as rational functions. f (x) + g(x)

> Let f (x) = x/(x2 - 1), g(x) = (1 - x)/(1 + x), and h(x) = 2/(3x + 1). Express the following as rational functions. g(x) - h(x - 3)

> Relate to the function whose graph is sketched in Fig. 12. For what values of x is f (x) ≤ 0? (2, 3) y = f(x) + 1 + 5 (7, –1)

> Let f (x) = x/(x2 - 1), g(x) = (1 - x)/(1 + x), and h(x) = 2/(3x + 1). Express the following as rational functions. f (x) + h(x)

> Let f (x) = x/(x2 - 1), g(x) = (1 - x)/(1 + x), and h(x) = 2/(3x + 1). Express the following as rational functions. g(x) - h(x)

> Let f (x) = x/(x2 - 1), g(x) = (1 - x)/(1 + x), and h(x) = 2/(3x + 1). Express the following as rational functions. f (x) - g(x + 1)

> Let f (x) = x/(x2 - 1), g(x) = (1 - x)/(1 + x), and h(x) = 2/(3x + 1). Express the following as rational functions. f (x) - g(x)

> Let f (x) = x2 - 2x, g(x) = 3x - 1, and h(x) = √x. Find the following functions. g(x)h(x)

> Let f (x) = x2 - 2x, g(x) = 3x - 1, and h(x) = √x. Find the following functions. f (x)/h(x)

> Let f (x) = x2 - 2x, g(x) = 3x - 1, and h(x) = √x. Find the following functions. f (x)g(x)

> If f (x) = x2 - 3x, find f (0), f (5), f (3), and f (-7).

> Let f (x) = x2 - 2x, g(x) = 3x - 1, and h(x) = √x. Find the following functions. f (x)h(x)

> Let f (x) = x2 - 2x, g(x) = 3x - 1, and h(x) = √x. Find the following functions. f (x) - g(x)

> Let f (x) = x2 - 2x, g(x) = 3x - 1, and h(x) = √x. Find the following functions. f (x) + g(x)

> Find the points of intersection of the curves y = -x2 + x + 1 and y = x - 5.

> Find the points of intersection of the curves y = 5x2 - 3x – 2 and y = 2x - 1.

> Find the zeros of the quadratic function y = -2x2 - x + 2.

> Find the zeros of the quadratic function y = 5x2 - 3x - 2.

> Factor the polynomials. x5 - x4 - 2x3

> Factor the polynomials. 18 + 3x - x2

> Let f (x) = x6, g(x) = x / 1 - x, and h(x) = x3 - 5x2 + 1. Calculate the following functions. f (g(x))

> Factor the polynomials. 3x2 - 3x - 60

> Factor the polynomials. 5x3 + 15x2 - 20x

> Is the point (1, -2) on the graph of the function k(x) = x2 + (2/x)?

> Is the point (1/2, - 3/5) on the graph of the function h(x) = (x2 - 1)/(x2 + 1)?

> Relate to the function whose graph is sketched in Fig. 12. For what values of x does f (x) = 0? (2, 3) y = f(x) + 1 + 5 (7, –1)

> Draw the following intervals on the number line. [1, 3/2]

> Determine the domains of the following functions. f (x) = 1 /√(3x)

> Determine the domains of the following functions. f (x) = √(x2 + 1)

> Determine the domains of the following functions. f (x) = √(x – 1)

> What is the difference between an open interval and a closed interval from a to b?

> Let f (x) = x / x - 2, g(x) = 5 – x / 5 + x, and h(x) = x + 1 / 3x - 1. Express the following as rational functions. h(1/x2)

> What are the four types of inequalities, and what do they each mean?

> Explain the relationships and differences among real numbers, rational numbers, and irrational numbers.

> Explain how to find f (a) geometrically from the graph of y = f (x).

> Explain how to solve f (x) = b geometrically from the graph of y = f (x).

> In the formula A = P(1 + i)n, what do A, P, i, and n represent?

> State the six laws of exponents.

> Relate to the function whose graph is sketched in Fig. 12. What is the range of f? (2, 3) y = f(x) + 1 + 5 (7, –1)

> Give two methods for finding the zeros of a quadratic function.

> What is a zero of a function?

> What five operations on functions are discussed in this chapter? Give an example of each.

> Let f (x) = x / x - 2, g(x) = 5 – x / 5 + x, and h(x) = x + 1 / 3x - 1. Express the following as rational functions. g(1 / u)

> What is meant by the absolute value of a number?

> Define and give an example of each of the following types of functions. (a) quadratic function (b) polynomial function (c) rational function (d) power function

> What is a quadratic function? What shape does its graph have?

> What are the x- and y-intercepts of a function, and how are they found?

> What is a linear function? Constant function? Give examples.

> What is the graph of a function, and how is it related to vertical lines?

> What is meant by the domain and range of a function?

> Relate to the function whose graph is sketched in Fig. 12. Is f (6) positive or negative? (2, 3) y = f(x) + 1 + 5 (7, –1)

> What is meant by “the value of a function at x”?

> What is a function?

> Let f (x) = x / x - 2, g(x) = 5 – x / 5 + x, and h(x) = x + 1 / 3x - 1. Express the following as rational functions. f(1 / t)

> Assign variables to the dimensions of the geometric object. Rectangular box with height =- length

> Assign variables to the dimensions of the geometric object. Rectangular box with square base

> Assign variables to the dimensions of the geometric object. Norman window: Rectangle topped with a semicircle

> Assign variables to the dimensions of the geometric object. Rectangle with height = 3 . width

> A store estimates that the total revenue (in dollars) from the sale of x bicycles per year is given by the function R(x) = 250x - .2x2. (a) Graph R(x) in the window [200, 500] by [42000, 75000]. (b) What sales level produces a revenue of $63,000? (c) Wha

> The daily cost (in dollars) of producing x units of a certain product is given by the function C(x) = 225 + 36.5x - .9x2 + .01x3. (a) Graph C(x) in the window [0, 70] by [ -400, 2000]. (b) What is the cost of producing 50 units of goods? (c) Consider the

> A ball thrown straight up into the air has height -16x2 + 80x feet after x seconds. (a) Graph the function in the window [0, 6] by [ -30, 120]. (b) What is the height of the ball after 3 seconds? (c) At what times will the height be 64 feet? (d) At what

> A ball is thrown straight up into the air. The function h(t) gives the height of the ball (in feet) after t seconds. In Exercises 45–50, translate the task into both a statement involving the function and a statement involving the graph of the function.

> Relate to the function whose graph is sketched in Fig. 12. Is f (4) positive or negative? (2, 3) y = f(x) + 1 + 5 (7, –1)

> A ball is thrown straight up into the air. The function h(t) gives the height of the ball (in feet) after t seconds. In Exercises 45–50, translate the task into both a statement involving the function and a statement involving the graph of the function.

> Let f (x) = x / x - 2, g(x) = 5 – x / 5 + x, and h(x) = x + 1 / 3x - 1. Express the following as rational functions. g(x + 5) / f (x + 5)

2.99

See Answer