2.99 See Answer

Question: Sketch the vector field F by drawing

Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9:
Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9.

Figure 9:


F (x, y) = (yi + xj)/√ (x^2+y^2)

F (x, y) = (yi + xj)/√ (x^2+y^2)





Transcribed Image Text:

ZA


> (a) Find a function f such that F = ∇f and (b) use part (a) to evaluate ∫C F ∙ dr along the given curve C. 12. F (x, y, z) = yz i + xz j + (xy + 2z) k, C is the line segment from (1, 0, -2) to (4, 6, 3)

> Use Green’s Theorem to evaluate ∫C F ∙ dr. (Check the orientation of the curve before applying the theorem.) F (x, y) =〈√ (x^2 + 1), tan^ (-1) x〉, C is the triangle from (0, 0) to (1, 1) to (0, 1) to (0, 0)

> Evaluate the line integral by two methods: (a) directly and (b) using Green’s Theorem. ∮C y2 dx + x2y dy, C is the rectangle with vertices (0, 0), (5, 0), (5, 4), and (0, 4)

> Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. F (x, y) = (y2 cos x + cos y) i + (2y sin x - x sin y) j

> Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. F (x, y) = (2xy + y-2) i + (x2 - 2xy-3) j, y > 0

> Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. F (x, y) = (yex + sin y) i + (ex + x cos y) j

> Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. F (x, y) = yex i + (ex + ey) j

> Let f be a joint density function of a pair of continuous random variables X and Y. (a). Write a double integral for the probability that X lies between a and b and Y lies between c and d. (b). What properties does f possess? (c). What are the expected v

> If a lamina occupies a plane region D and has density function ρ (x, y), write expressions for each of the following in terms of double integrals. (a). The mass (b). The moments about the axes (c). The center of mass (d). The moments of inertia about the

> Find curl F and div F if F (x, y, z) = e-x sin y i + e-y sin z j + e-z sin x k

> How do you find the length of a space curve given by a vector function r (t)?

> Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. F (x, y) = (xy + y2) i + (x2 + 2xy) j

> (a). What is the definition of curvature? (b). Write a formula for curvature in terms of r'(t) and T'(t). (c). Write a formula for curvature in terms of r'(t) and r''(t). (d). Write a formula for the curvature of a plane curve with equation y - f (x).

> Find the gradient vector field ∆f of f and sketch it. f (x, y) = 1/2 (x2 - y2)

> Find the gradient vector field ∆f of f and sketch it. f (x, y) = ½ (x – y)2

> Find the work done by the force field F in moving an object from P to Q. F (x, y) = (2x + y) i + x j; P (1, 1), Q (4, 3)

> Find the work done by the force field F in moving an object from P to Q. F (x, y) = x3 i + y3 j; P (1, 0), Q (2, 2)

> Suppose an experiment determines that the amount of work required for a force field F to move a particle from the point (1, 2) to the point (5, -3) along a curve C1 is 1.2 J and the work done by F in moving the particle along another curve C2 between the

> If u and v are differentiable vector functions, c is a scalar, and f is a real-valued function, write the rules for differentiating the following vector functions. (a). u (t) + v (t) (b). cu (t) (c). f (t) u (t) (d). u(t) ∙ v (t) (e). u (t) × v (t) (

> A table of values of a function f with continuous gradient is given. Find ∫C ∇f  dr, where C has parametric equations x = t2 + 1 y = t3 + t 0 < t < 1

> Use Green’s Theorem to evaluate ∫C x2y dx - xy2 dy, where C is the circle x2 + y2 = 4 with counterclockwise orientation.

> (a) Find a function f such that F = &acirc;&#136;&#135;f and (b) use part (a) to evaluate &acirc;&#136;&laquo;C F &acirc;&#136;&#153; dr along the given curve C. 12. F(x, y, z) = sin y i+ (x cos y + cos z)j – y sin z k, C: r(t) = sin ti + tj+ 2t k,

> (a) Find a function f such that F = &acirc;&#136;&#135;f and (b) use part (a) to evaluate &acirc;&#136;&laquo;C F &acirc;&#136;&#153; dr along the given curve C. 12. F(x, y, z) = yze" i + e* j+ xye* k, C: r(t) = (t² + 1) i + (t² – 1) j + (r² - 21)

> (a) Find a function f such that F = &acirc;&#136;&#135;f and (b) use part (a) to evaluate &acirc;&#136;&laquo;C F &acirc;&#136;&#153; dr along the given curve C. 12. F(x, y, z) = (y²z + 2xz²) i + 2xyz j + (xy² + 2x²z) k, C: x= Vī, y = t + 1, z = t²

> (a) Find a function f such that F = ∇f and (b) use part (a) to evaluate ∫C F ∙ dr along the given curve C. 12. F (x, y) = (1 + xy) exy i + x2exy j, C: r (t) = cos t i + 2 sin t j, 0 < t < π/2

> (a) Find a function f such that F = ∆f and (b) use part (a) to evaluate ∫C F ∙ dr along the given curve C. 12. F (x, y) = x2y3 i + x3y2 j, C: r (t) =〈t3 - 2t, t3 + 2t〉, 0 < t < 1

> (a) Find a function f such that F = ∇f and (b) use part (a) to evaluate ∫C F ∙ dr along the given curve C. 12. F (x, y) = (3 + 2xy2) i + 2x2y j, C is the arc of the hyperbola y = 1/x from (1, 1) to (4, 1/4)

> Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9: F (x, y) = -1/2 i + (y &acirc;&#128;&#147; x) j ZA

> Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. F (x, y) = (ln y + y/x) i + (ln x + x/y) j

> What is a vector function? How do you find its derivative and its integral?

> Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9: F (x, y) = 1/2 x i + y j ZA

> Use Green’s Theorem to evaluate ∫C √1 + x3 dx + 2xy dy where C is the triangle with vertices (0, 0), (1, 0), and (1, 3).

> Suppose a solid object occupies the region E and has density function ρ (x, y, z). Write expressions for each of the following. (a). The mass (b). The moments about the coordinate planes (c). The coordinates of the center of mass (d). The moments of iner

> Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9: F (x, y, z) = i ZA

> Write an expression for the area of a surface with equation z = f (x, y), (x, y) ∈ D.

> How do you find the tangent vector to a smooth curve at a point? How do you find the tangent line? The unit tangent vector?

> (a). What does it mean to say that f is continuous at (a, b)? (b). If f is continuous on R2, what can you say about its graph?

> Find the gradient vector field of f. f (x, y, z) = x2yey/z

> Find the gradient vector field of f. f (x, y, z) = √ (x^2 + y^2 + z^2)

> Find the gradient vector field of f. f (s, t) = √ (2s + 3t)

> Find the gradient vector field of f. f (x, y) = y sin (xy)

> What is the connection between vector functions and space curves?

> If a is a constant vector, r = x i + y j + z k, and S is an oriented, smooth surface with a simple, closed, smooth, positively oriented boundary curve C, show that Sf 2a · ds = (a x r) · dr 2а

> Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9: F (x, y) = y i + (x + y) j ZA

> Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9: F (x, y, z) = i + k ZA

> Sketch the vector field F by drawing a diagram like Figure 5 or Figure 9. Figure 9: F (x, y) = (yi- xj)/&acirc;&#136;&#154; (x^2+y^2) ZA

> Match the vector fields F on R3 with the plots labeled I&acirc;&#128;&#147;IV. Give reasons for your choices. F (x, y, z) = i + 2 j + z k II 1- -1 -1 0 y

> Match the vector fields F on R3 with the plots labeled I&acirc;&#128;&#147;IV. Give reasons for your choices. F (x, y, z) = i + 2 j + 3 k 1 z0- -1 -1 0 1 10-1 y

> Match the vector fields F with the plots labeled I&acirc;&#128;&#147;IV. Give reasons for your choices. F (x, y) = &acirc;&#140;&copy;cos (x + y), x&acirc;&#140;&ordf; IV 3 -3 3 11 -3

> If z is defined implicitly as a function of x and y by an equation of the form F (x, y, z) = 0, how do you find ∂zy/∂x and ∂z/∂y?

> If z = f (x, y), what are the differentials dx, dy, and dz?

> Evaluate the line integral, where C is the given curve. ∫C x2y ds, C: x = cos t, y = sin t, z = t, 0 < t < π/2

> If the components of F have continuous second partial derivatives and S is the boundary surface of a simple solid region, show that ∫∫S curl F ∙ dS = 0.

> Investigate the shape of the surface with parametric equations x = sin u, y = sin v, z = sin (u + v). Start by graphing the surface from several points of view. Explain the appearance of the graphs by determining the traces in the horizontal planes z = 0

> Evaluate the line integral, where C is the given curve. ∫C x2 dx + y2 dy, C consists of the arc of the circle x2 + y2 = 4 from (2, 0) to (0, 2) followed by the line segment from (0, 2) to (4, 3)

> Evaluate the line integral, where C is the given curve. ∫C (x + 2y) dx + x2 dy, C consists of line segments from (0, 0) to (2, 1) and from (2, 1) to (3, 0)

> Evaluate the line integral, where C is the given curve. ∫C ex dx, C is the arc of the curve x = y3 from (-1, -1) to (1, 1)

> Evaluate the line integral, where C is the given curve. ∫C (x2y + sin x) dy, C is the arc of the parabola y = x2 from (0, 0) to (π, π2)

> Evaluate the line integral, where C is the given curve. ∫C xey ds, C is the line segment from (2, 0) to (5, 4)

> A thin wire is bent into the shape of a semicircle x2 + y2 = 4, x > 0. If the linear density is a constant k, find the mass and center of mass of the wire.

> Find the exact value of ∫C x3y2z ds, where C is the curve with parametric equations x = e-t cos 4t, y = e-t sin 4t, z = e-t, 0 < t < 2π.

> (a). Evaluate the line integral&acirc;&#136;&laquo;C F &acirc;&#136;&#153; dr, where F (x, y, z) = x i - z j + y k and C is given by r(t) = 2t i + 3t j - t2 k, -1 (b). Illustrate part (a) by using a computer to graph C and the vectors from the vector fie

> Evaluate the line integral, where C is the given curve. ∫C xy4 ds, C is the right half of the circle x2 + y2 = 16

> Use a calculator to evaluate the line integral correct to four decimal places. ∫C z ln (x + y) ds, where C has parametric equations x = 1 + 3t, y = 2 + t2, z = t4, -1 < t < 1

> Find &acirc;&#136;&laquo;&acirc;&#136;&laquo;S F &acirc;&#136;&#153; n dS, where F (x, y, z) = x i + y j + z k and S is the outwardly oriented surface shown in the figure (the boundary surface of a cube with a unit corner cube removed). ZA (0, 2, 2)

> Use a calculator to evaluate the line integral correct to four decimal places. ∫C xy arctan z ds, where C has parametric equations x = t2, y = t3, z = √t, 1 < t < 2

> (a). Find a parametric representation for the torus obtained by rotating about the z-axis the circle in the xz-plane with center (b, 0, 0) and radius a (b). Use the parametric equations found in part (a) to graph the torus for several values of a and b.

> Use a calculator to evaluate the line integral correct to four decimal places. ∫C F ∙ dr, where F (x, y) = √(x + y) i + (y/x) j and r(t) = sin2 t i + sin t cos t j, π/6 < t < π/3

> Evaluate the line integral ∫C F ∙ dr, where C is given by the vector function r(t). F (x, y, z) = x i + y j + xy k, r(t) = cos t i + sin t j + t k, 0 < t < π

> Evaluate the line integral ∫C F ∙ dr, where C is given by the vector function r(t). F (x, y, z) = sin x i + cos y j + xz k, r (t) = t3 i - t2 j + t k, 0 < t < 1

> (a). Show that the parametric equations x = a cosh u cos v, y = b cosh u sin v, z = c sinh u, represent a hyperboloid of one sheet. (b). Use the parametric equations in part (a) to graph the hyperboloid for the case a = 1, b = 2, c = 3. (c). Set up, but

> Evaluate the line integral, where C is the given curve. ∫C (x/y) ds, C: x = t 3, y = t 4, 1 < t < 2

> Evaluate the line integral ∫C F ∙ dr, where C is given by the vector function r(t). F (x, y) = xy2 i - x2 j, r(t) = t3 i + t2 j, 0 < t < 1

> Find the exact area of the surface z = 1 + 2x + 3y + 4y2, 1 < x < 4, 0 < y < 1.

> Find the area of the surface with vector equation r (u, v) = 〈cos3u cos3v, sin3u cos3v, sin3v〉, 0 < u < u, 0 < v < 2π. State your answer corrects to four decimal places.

> Let F (x, y) = (2x3 + 2xy2 - 2y) i + (2y3 + 2x2y + 2x) j x2 + y2 Evaluate &acirc;&#136;&laquo;C F &acirc;&#136;&#153; dr, where C is shown in the figure. C

> (a). Use the Midpoint Rule for double integrals (see Section 15.1) with six squares to estimate the area of the surface z = 1/ (1 + x2 + y2), 0 < x < 6, 0 < y < 4. (b). Use a computer algebra system to approximate the surface area in part (a) to four dec

> Find, to four decimal places, the area of the part of the surface z = (1 + x2)/ (1 + y2) that lies above the square |x | + |y | < 1. Illustrate by graphing this part of the surface.

> Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral. The part of the surface z = ln (x2 + y2 + 2) that lies above the disk x2 + y2 < 1

> Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral. The part of the surface z = cos (x2 + y2) that lies inside the cylinder x2 + y2 = 1

> If the equation of a surface S is z = f (x, y), where x2 + y2 < R2, and you know that | fx | < 1 and | fy | < 1, what can you say about A (S)?

> If C is a smooth curve given by a vector function r (t), a r• dr = {[Ir(b)|? – \r(a)F]

> Let F be an inverse square field, that is, F (r) = cr/|r |3 for some constant c, where r = x i + y j + z k. Show that the flux of F across a sphere S with center the origin is independent of the radius of S.

> The temperature at a point in a ball with conductivity K is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a sphere S of radius a with center at the center of the ball.

> The temperature at the point (x, y, z) in a substance with conductivity K = 6.5 is u (x, y, z) = 2y2 + 2z2. Find the rate of heat flow inward across the cylindrical surface y2 + z2 = 6, 0 < x < 4.

> Use Gauss’s Law to find the charge enclosed by the cube with vertices (±1, ±1, ±1) if the electric field is E (x, y, z) = x i + y j + z k

> Let F (x, y, z) = (3x2yz - 3y) i + (x3z - 3x) j + (x3y + 2z) k Evaluate &acirc;&#136;&laquo;C F &acirc;&#136;&#153; dr, where C is the curve with initial point (0, 0, 2) and terminal point (0, 3, 0) shown in the figure. ZA (0, 0, 2) (0, 3, 0) (1, 1,

> Use Gauss’s Law to find the charge contained in the solid hemisphere x2 + y2 + z2 < a2, z > 0, if the electric field is E (x, y, z) = x i + y j + 2z k

> Seawater has density 1025 kg/m3 and flows in a velocity field v = y i + x j, where x, y, and z are measured in meters and the components of v in meters per second. Find the rate of flow outward through the hemisphere x2 + y2 + z2 = 9, z > 0.

> A fluid has density 870 kg/m3 and flows with velocity v = z i + y2 j + x2 k, where x, y, and z are measured in meters and the components of v in meters per second. Find the rate of flow outward through the cylinder x2 + y2 = 4, 0 < z < 1.

> Find the area of the surface. The part of the cone z = √x2 + y2 that lies between the plane y = x and the cylinder y = x2

> (a). Give an integral expression for the moment of inertia Iz about the z-axis of a thin sheet in the shape of a surface S if the density function is ρ. (b). Find the moment of inertia about the z-axis of the funnel in Exercise 40 Exercise 40: Find the

> Find the mass of a thin funnel in the shape of a cone z = √x2 + y2, 1 < z < 4, if its density function is ρ (x, y, z) = 10 - z.

> Find the center of mass of the hemisphere x2 + y2 + z2 = a2, z > 0, if it has constant density.

> Find an equation of the tangent plane to the given parametric surface at the specified point. Graph the surface and the tangent plane. r(u, v) = (1 – u² – v²) i – vj – u k; (-1, –1, –1)

> Find an equation of the tangent plane to the given parametric surface at the specified point. Graph the surface and the tangent plane. r(u, v) = ưi + 2u sin vj + u cos vk; u = 1, v =0

> Find the flux of F (x, y, z) = sin (xyz) i + x2y j + z2ex/5 k across the part of the cylinder 4y2 + z2 = 4 that lies above the xy-plane and between the planes x = -2 and x = 2 with upward orientation. Illustrate by using a computer algebra system to draw

> Compute the outward flux of F (x, y, z) = x i + y j + z k/ (x2 + y2 + z2)3/2 through the ellipsoid 4x2 + 9y2 + 6z2 = 36.

> Find the value of ∫∫S x2y2z2 dS correct to four decimal places, where S is the part of the paraboloid z = 3 - 2x2 - y2 that lies above the xy-plane.

> Find the exact value of ∫∫S xyz dS, where S is the surface z = x2y2, 0 < x < 1, 0 < y < 2.

2.99

See Answer