a. identify the claim and state H0 and Ha,
b. find the critical value(s) and identify the rejection region(s),
c. find the standardized test statistic t,
d. decide whether to reject or fail to reject the null hypothesis, and
e. interpret the decision in the context of the original claim.
Assume the samples are random and independent, and the populations are normally distributed.
A marine biologist claims that the mean fork length (see figure at the left) of yellowfin tuna is different in two zones in the eastern tropical Pacific Ocean. A sample of 26 yellowfin tuna collected in Zone A has a mean fork length of 76.2 centimeters and a standard deviation of 16.5 centimeters. A sample of 31 yellowfin tuna collected in Zone B has a mean fork length of 80.8 centimeters and a standard deviation of 23.4 centimeters. At α = 0.01, can you support the marine biologistâs claim? Assume the population variances are equal.
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decision
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decision
> What conditions are necessary in order to use the z-test to test the difference between two population proportions?
> The contingency table shows how a random sample of adults rated a newly released movie and gender. At α = 0.05, can you conclude that the adults’ ratings are related to gender? Rating Gender Excellent Good Fair Роor Ma
> Test the claim about the mean of the differences for a population of paired data at the level of significance α. Assume the samples are random and dependent, and the populations are normally distributed. Claim: µd ≠ 0; α = 0.10. Sample statistics: d = -1
> Test the claim about the mean of the differences for a population of paired data at the level of significance α. Assume the samples are random and dependent, and the populations are normally distributed. Claim: µd ≥ 0; α = 0.01. Sample statistics: d = -2
> Test the claim about the mean of the differences for a population of paired data at the level of significance α. Assume the samples are random and dependent, and the populations are normally distributed. Claim: µd > 0; α = 0.05. Sample statistics: d = 0.
> Test the claim about the mean of the differences for a population of paired data at the level of significance α. Assume the samples are random and dependent, and the populations are normally distributed. Claim: µd ≤ 0; α = 0.10. Sample statistics: d = 6.
> Test the claim about the mean of the differences for a population of paired data at the level of significance α. Assume the samples are random and dependent, and the populations are normally distributed. Claim: µd = 0; α = 0.01. Sample statistics: d = 3.
> Test the claim about the mean of the differences for a population of paired data at the level of significance α. Assume the samples are random and dependent, and the populations are normally distributed. Claim: µd < 0; α = 0.05. Sample statistics: d = 1.
> Construct the indicated confidence interval for µd. Assume the populations are normally distributed. A sleep disorder specialist wants to test whether herbal medicine increases the number of hours of sleep patients get during the night. To d
> Construct the indicated confidence interval for µd. Assume the populations are normally distributed. A sleep disorder specialist wants to test the effectiveness of a new drug that is reported to increase the number of hours of sleep patients
> In Exercise 18, use technology to perform the hypothesis test with a P-value. Compare your result with the result obtained using rejection regions. Are they the same? From Exercise 18: Assume the samples are random and dependent, and the populations are
> In Exercise 15, use technology to perform the hypothesis test with a P-value. Compare your result with the result obtained using rejection regions. Are they the same? From Exercise 15: Assume the samples are random and dependent, and the populations are
> A researcher claims that the credit card debts of college students are distributed as shown in the pie chart. You randomly select 900 college students and record the credit card debt of each. The table shows the results. At α = 0.05, test
> Explain what the symbols d and sd represent.
> A school administrator claims that the standard deviations of reading test scores for eighth-grade students are the same in Colorado and Utah. A random sample of 16 test scores from Colorado has a standard deviation of 34.6 points, and a random sample of
> What conditions are necessary in order to use the dependent samples t-test for the mean of the differences for a population of paired data?
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 = µ2; α = 0.01. Assume σ12 = σ22 Sample sta
> Use Table 5 in Appendix B to find the critical value(s) for the alternative hypothesis, level of significance α, and sample sizes n1 and n2. Assume that the samples are random and independent, the populations are normally distributed, and t
> Use Table 5 in Appendix B to find the critical value(s) for the alternative hypothesis, level of significance α, and sample sizes n1 and n2. Assume that the samples are random and independent, the populations are normally distributed, and t
> Use Table 5 in Appendix B to find the critical value(s) for the alternative hypothesis, level of significance α, and sample sizes n1 and n2. Assume that the samples are random and independent, the populations are normally distributed, and t
> Use Table 5 in Appendix B to find the critical value(s) for the alternative hypothesis, level of significance α, and sample sizes n1 and n2. Assume that the samples are random and independent, the populations are normally distributed, and t
> Use Table 5 in Appendix B to find the critical value(s) for the alternative hypothesis, level of significance α, and sample sizes n1 and n2. Assume that the samples are random and independent, the populations are normally distributed, and t
> Use Table 5 in Appendix B to find the critical value(s) for the alternative hypothesis, level of significance α, and sample sizes n1 and n2. Assume that the samples are random and independent, the populations are normally distributed, and t
> Construct the indicated confidence interval for µ1 - µ2. Assume the populations are approximately normal with equal variances. To compare the mean ages of male and female participants in a 10K race, you randomly select several a
> Construct the indicated confidence interval for µ1 - µ2. Assume the populations are approximately normal with equal variances. To compare the mean number of days spent waiting to see a family doctor for two large cities, you ran
> Construct the indicated confidence interval for µ1 - µ2. Assume the populations are approximately normal with unequal variances. To compare the mean driving distances for two golfers, you randomly select several drives from each
> Construct the indicated confidence interval for µ1 - µ2. Assume the populations are approximately normal with unequal variances. To compare the mean finishing times of male and female participants in a 10K race, you randomly sel
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> Explain how to perform a two-sample t-test for the difference between two population means.
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decision
> Construct the indicated confidence interval for the population mean µ. Which distribution did you use to create the confidence interval? c = 0.90, x = 8.21, σ = 0.62, n = 8
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decision
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decision
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic t, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 > µ2; α = 0.01. Assume σ12 ≠ σ22 Sample sta
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 ≤ µ2; α = 0.05. Assume σ12 ≠ σ22 Sample sta
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 < µ2; α = 0.10. Assume σ12 = σ22 Sample sta
> What conditions are necessary in order to use the t-test to test the difference between two population means?
> Use the TI-84 Plus display to make a decision to reject or fail to reject the null hypothesis at the level of significance. Make your decision using the standardized test statistic and using the P-value. Assume the sample sizes are equal. &Ic
> Construct the indicated confidence interval for the population mean µ. Which distribution did you use to create the confidence interval? c = 0.99, x = 12.1, s = 2.64, n = 26
> Classify the two samples as independent or dependent and justify your answer. Sample 1: The commute times of 10 workers when they use their own vehicles Sample 2: The commute times of the same 10 workers when they use public transportation
> Classify the two samples as independent or dependent and justify your answer. Sample 1: The average speed of 23 powerboats using an old hull design Sample 2: The average speed of 14 powerboats using a new hull design
> Classify the two samples as independent or dependent and justify your answer. Sample 1: The IQ scores of 60 females Sample 2: The IQ scores of 60 males
> Classify the two samples as independent or dependent and justify your answer. Sample 1: The maximum bench press weights for 53 football players Sample 2: The maximum bench press weights for the same 53 football players after completing a weight liftin
> What conditions are necessary in order to use the z-test to test the difference between two population means?
> Construct the indicated confidence interval for µ1 - µ2. Construct a 99% confidence interval for the difference between the mean annual salaries of entry level architects in Denver, Colorado, and Los Angeles, California, using t
> Describe another way you can perform a hypothesis test for the difference between the means of two populations using independent samples with σ1 and σ2 known that does not use rejection regions.
> Construct the indicated confidence interval for µ1 - µ2. Construct a 95% confidence interval for the difference between the mean annual salaries of entry level software engineers in Raleigh, North Carolina, and Wichita, Kansas,
> Is the difference between the mean annual salaries of entry level architects in Denver, Colorado, and Los Angeles, California, equal to $10,000? To decide, you select a random sample of entry level architects from each city. The results of each survey ar
> Is the difference between the mean annual salaries of entry level software engineers in Raleigh, North Carolina, and Wichita, Kansas, more than $2000? To decide, you select a random sample of entry level software engineers from each city. The results of
> Construct the indicated confidence interval for the population mean µ. Which distribution did you use to create the confidence interval? c = 0.95, x = 3.46, s = 1.63, n = 16
> Explain why the null hypothesis H0: µ1 ≥ µ2 is equivalent to the null hypothesis H0: µ1 - µ2 ≥ 0.
> Explain why the null hypothesis H0: µ1 = µ2 is equivalent to the null hypothesis H0: µ1 - µ2 = 0.
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> Explain how to perform a two-sample z-test for the difference between two population means using independent samples with σ1 and σ2 known.
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> Construct the indicated confidence interval for the population mean µ. Which distribution did you use to create the confidence interval? c = 0.95, x = 26.97, σ = 3.4, n = 42
> a. Identify the claim and state H0 and Ha. b. Determine whether the hypothesis test is left-tailed, right-tailed, or two-tailed, and whether to use a z-test, a t-test, or a chi-square test. Explain your reasoning. c. Choose one of the options. Option
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0, and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic z, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 ≤ µ2; α = 0.03 Population statistics: σ1 =
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 < µ2; α = 0.05 Population statistics: σ1 =
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 > µ2; α = 0.10 Population statistics: σ1 =
> Test the claim about the difference between two population means µ1 and µ2 at the level of significance α. Assume the samples are random and independent, and the populations are normally distributed. Claim: µ1 = µ2; α = 0.1 Population statistics: σ1 = 3
> Use the TI-84 Plus display to make a decision to reject or fail to reject the null hypothesis at the level of significance. Make your decision using the standardized test statistic and using the P-value. Assume the sample sizes are equal. &Ic
> What is the difference between two samples that are dependent and two samples that are independent? Give an example of each.
> Find the critical value(s) and rejection region(s) for the type of chi-square test with sample size n and level of significance α. Two-tailed test, n = 81, α = 0.10
> The table shows the gas mileages (in miles per gallon) of eight cars with and without using a fuel additive. At α = 0.10, is there enough evidence to conclude that the additive improved gas mileage? Assume the populations are normally distr
> Find the critical value(s) and rejection region(s) for the type of chi-square test with sample size n and level of significance α. Left-tailed test, n = 24, α = 0.05
> Find the critical value(s) and rejection region(s) for the type of chi-square test with sample size n and level of significance α. Left-tailed test, n = 7, α = 0.01
> Find the critical value(s) and rejection region(s) for the type of chi-square test with sample size n and level of significance α. Right-tailed test, n = 10, α = 0.10
> Find the critical value(s) and rejection region(s) for the type of chi-square test with sample size n and level of significance α. Right-tailed test, n = 27, α = 0.05
> Explain how to test a population variance or a population standard deviation.
> You can calculate the P-value for a chi-square test using technology. After calculating the standardized test statistic, use the cumulative distribution function (CDF) to calculate the area under the curve. From Example 4 on page 397, x2 = 43.2. Using a
> You can calculate the P-value for a chi-square test using technology. After calculating the standardized test statistic, use the cumulative distribution function (CDF) to calculate the area under the curve. From Example 4 on page 397, x2 = 43.2. Using a
> You can calculate the P-value for a chi-square test using technology. After calculating the standardized test statistic, use the cumulative distribution function (CDF) to calculate the area under the curve. From Example 4 on page 397, x2 = 43.2. Using a
> You can calculate the P-value for a chi-square test using technology. After calculating the standardized test statistic, use the cumulative distribution function (CDF) to calculate the area under the curve. From Example 4 on page 397, x2 = 43.2. Using a
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> In a survey of 3015 U.S. adults, 80% say their household contains a desktop or laptop computer. a. Construct a 95% confidence interval for the proportion of U.S. adults who say their household contains a desktop or laptop computer. b. A researcher clai
> How do the requirements for a chi-square test for a variance or standard deviation differ from a z-test or a t-test for a mean?
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> a. identify the claim and state H0 and Ha, b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic x2, d. decide whether to reject or fail to reject the null hypothesis, and e. interpret the decisio
> Test the claim about the population variance σ2 or standard deviation σ at the level of significance α. Assume the population is normally distributed. Claim: σ = 24.9; α = 0.10. Sample statistics: s = 29.1, n = 51