1.99 See Answer

Question: Evaluate the integral / Graph the integrand and

Evaluate the integral
Evaluate the integral
Graph the integrand and its indefinite integral on the same screen and check that your answer is reasonable.

Graph the integrand and its indefinite integral on the same screen and check that your answer is reasonable.





Transcribed Image Text:

dx x* /x? – 2


> Evaluate the integral. sin 20 sin 60 do

> Evaluate the integral. | sin 8x cos 5x dx

> Evaluate the integral. w/3 csc'x dx Ju/6 (

> Use the sum of the first 10 terms to approximate the sum of the series Use Exercise 46 to estimate the error. Data from Exercise 46: Let / be a series with positive terms and let / Suppose that / converges by the Ratio Test. As usual, we let Rn be the

> Evaluate the integral. csc x dx

> Evaluate the integral. "w/2 csc*0 cot*0 d0 a/4

> Evaluate the integral. *w/2 " cot°o csc'p dp Jm/4

> Evaluate the integral. *w/2 cot'x dx /4

> Evaluate the integral. sin cos'o

> Evaluate the integral. sec x tan x dx

> Evaluate the integral. | tan?x sec x dx

> Evaluate the integral. ( tan'x dx

> Evaluate the integral. w/4 tan't dt

> Evaluate the integral. | dx tan'x sec"x

> (a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylor’s Inequality to estimate the accuracy of the approximation / when x lies in the given interval. (c) Check your result in part (b) by graphing / S

> Evaluate the integral. | tan'x sec'x dx

> Evaluate the integral. tan'x sec x dx

> Evaluate the integral. w/4 sec°0 tan°0 do

> Evaluate the integral. | tan'x sec'x dx

> Evaluate the integral. | (tan?x + tan“x) dx

> Evaluate the integral. ( tan?0 sec*0 do

> Evaluate the integral. tan x sec'x dx

> Evaluate the integral. |x sin'x dx

> Evaluate the integral. t sin't dt

> Evaluate the integral. sin x cos(r) dx

> Evaluate the integral. | cot x cos'x dx

> Evaluate the integral. sin°(1/t) dt

> Evaluate the integral. | Vcos 0 sin*0 do

> Evaluate the integral. "w/2 (2 – Jo sin 0)² d0

> Evaluate the integral. *w/2 sin'x cos?x dx Jo

> Evaluate the integral. (" sin?t cos*t dt

> Evaluate the integral. " cos“(21) dt

> Evaluate the integral. *2 sin°(40) do

> Evaluate the integral. '피/2 cos²0 d0 Jo

> Evaluate the integral. |t cos (1²) dt

> Evaluate the integral. sin (21) cos (21) dt

> Evaluate the integral. *w/2 ( sin'x dx

> Evaluate the integral. *w/2 sin'0 cos*0 d0

> Evaluate the integral. sin*0 cos“0 d0

> Evaluate the integral. sin?x cos'x dx

> A water storage tank has the shape of a cylinder with diameter 10 ft. It is mounted so that the circular cross-sections are vertical. If the depth of the water is 7 ft, what per cent age of the total capacity is being used?

> Find the area of the crescent-shaped region (called a lune) bounded by arcs of circles with radii r and R. R

> A charged rod of length L produces an electric field at point P(a, b) given by where / is the charge density per unit length on the rod and «0 is the free space permittivity (see the figure). Evaluate the integral to determine an expression

> A torus is generated by rotating the circle x2 + (y-R)2 = r2 about the x-axis. Find the volume enclosed by the torus.

> The parabola y = 1 2 x2 divides the disk x2+y2 < 8 into two parts. Find the areas of both parts.

> For which positive integers k is the following series convergent? (n!)? Σ (kn)! 12 一1

> (a) Use trigonometric substitution to verify that (b) Use the figure to give trigonometric interpretations of both terms on the right side of the equation in part (a). Va? – 1? dt = }a² sin '(x/a) + £x /a? – x² y y=Va² -r

> Find the volume of the solid obtained by rotating about the line x = 1 the region under the curve /

> Find the volume of the solid obtained by rotating about the x-axis the region enclosed by the curves /

> Find the area of the region bounded by the hyperbola 9x2 - 4y2 = 36 and the line x = 3.

> Evaluate (a) by trigonometric substitution. (b) by the hyperbolic substitution x = a sinh t. x2 (x² + a²)½ dx

> (a) Use trigonometric substitution to show that (b) Use the hyperbolic substitution x = a sinh t to show that These formulas are connected by Formula 3.11.3. dx = In(x + Vx? + a²) + C x² + a² -2 (). dx sinh + C x² + a² a

> Evaluate the integral. cos t = dt V1 + sin?t */2 Jo

> For which of the following series is the Ratio Test inconclusive (that is, it fails to give a definite answer)? (a) 2 (b) E 2" (-3)*-1 (c) E Vn (d) E n-1 1 + n? n-1 2 - |

> Evaluate the integral. JxVī - x* dx

> Evaluate the integral. x? + 1 (x² – 2x + 2)

> Evaluate the integral. S | Vx? + 2x dx

> Evaluate the integral. - dx J (3 + 4x – 4x²)³/2

> Evaluate the integral. x² V3 + 2x – x² dx

> Evaluate the integral. x² dx

> Evaluate the integral. dx Vx? + 2x + 5

> Evaluate the integral. I Vx? + 1 dx

> Evaluate the integral. x2 r0.6 dx V9 - 25х?

> Evaluate the integral. dx V1 + x?

> Evaluate the integral. V1 + x? dx

> Evaluate the integral. dx I [(ax)? – b²]³/2

> Evaluate the integral. dx (2/3 JAs x/9x? – 1 J2/3

> Evaluate the integral. r Va² – x² dx

> Evaluate the integral. dx (x² + 1)?

> Evaluate the integral. Vx? – 9 dx 2 .3

> Evaluate the integral. dt V4 + t?

> Evaluate the integral. r1/2 x V1 – 4x² dx

> Evaluate the integral. 2/3 /4 - 9х? dx Jo

> Evaluate the integral. dx (x² 3/2

> Evaluate the integral. dt t?V12 – 16

> Evaluate the integral. dx Jo Ta² + x²)/2* a >0

> Evaluate the integral. dx (36— х2

> Evaluate the integral. .2 dx .4

> Evaluate the integral. x2 dx

> Evaluate the integral using the indicated trigonometric substitution. Sketch and label the associated right triangle. /x² – 4 dx X = 2 sec 0

> Evaluate the integral using the indicated trigonometric substitution. Sketch and label the associated right triangle. x x = 2 tan 0 dx Vx2 + 4

> Evaluate the integral using the indicated trigonometric substitution. Sketch and label the associated right triangle. dx x = 2 sin 0 J x4 - x2

> If a &acirc;&#137;&nbsp; 0 and n is a positive integer, find the partial fraction decomposition of S(x) x"(х — а)

> If f is a quadratic function such that f(0) = 1 and is a rational function, find the value of f(0). f(x) ·dx x²(x + 1)'

> Suppose that F, G, and Q are polynomials and for all x except when Q(x) = 0. Prove that F(x) = G(x) for all x. F(x) G(x) Q(x) Q(x)

> (a) Use integration by parts to show that, for any positive integer n (b) Use part (a) to evaluate dx dx J (x² + a²)* 2a*(n – 1)(x² + a²)" -| 2n – 3 dx 2a*(n – 1) J 2а"(л — (x² + a²)ª ! dx dx and (x² + 1)² (x² + 1)'

> (a) Find the partial fraction decomposition of the function (b) Use part (a) to find / and graph f and its indefinite integral on the same screen. (c) Use the graph of f to discover the main features of the graph of / 12x – 7x – 13x² + 8 100x – 80x +

> (a) Use a computer algebra system to find the partial fraction decomposition of the function (b) Use part (a) to find / (by hand) and compare with the result of using the CAS to integrate f directly. Comment on any discrepancy. 4x – 27x² + 5x – 32 f(

> Factor x4 + 1 as a difference of squares by first adding and subtracting the same quantity. Use this factorization to evaluate /

> One method of slowing the growth of an insect population without using pesticides is to introduce into the population a number of sterile males that mate with fertile females but produce no offspring. (The photo shows a screw-worm fly, the first pest eff

> Find the volume of the resulting solid if the region under the curve / is rotated about (a) the x-axis and (b) the y-axis.

> Find the area of the region under the given curve from 1 to 2. х2 + 1 y 3x – x?

> Find the area of the region under the given curve from 1 to 2. 1 y = x' + x

> Use the substitution to transform the integrand into a rational function of t and then evaluate the integral. 12 sin 2x dx w/2 Jo 2 + cos x

> Use the substitution to transform the integrand into a rational function of t and then evaluate the integral. /2 dx /3 1 + sin x – cos x

> Use the substitution to transform the integrand into a rational function of t and then evaluate the integral. 1 dx 3 sin x – 4 cos x

> Use the substitution to transform the integrand into a rational function of t and then evaluate the integral. dx 1 - cos x

> The German mathematician Karl Weierstrass (1815&acirc;&#128;&#147;1897) noticed that the substitution t = tan(x/2) will convert any rational function of sin x and cos x into an ordinary rational function of t. (a) If / sketch a right triangle or use trig

> Evaluate the integral by completing the square and using Formula 6. 2х + 1 dx 4x? + 12х — 7

> Evaluate the integral by completing the square and using Formula 6. dx x² – 2x

1.99

See Answer