1.99 See Answer

Question: Find the exact length of the curve. /

Find the exact length of the curve.
Find the exact length of the curve.





Transcribed Image Text:

x = e' – t, y = 4e"?, 0


> Describe the motion of a particle with position sx, yd as t varies in the given interval. x = 5 sin t, y = 2 cos t, -T<I< 5T

> Describe the motion of a particle with position sx, yd as t varies in the given interval. x = 2 + sin t, y=1 + 3 cos t, T/2<1<27

> Describe the motion of a particle with position sx, yd as t varies in the given interval. x = 5 + 2 cos T t, y=3 + 2 sin mt, 1<t<2

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. х — tan'o, у — sec 0, —п/2 <0 < п/2

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. x = sinh t, y= cosh t

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. x = /i + 1, y= vi - 1

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. x = t, y= In t

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. 21 x = e', y

> Find the radius of convergence and interval of convergence of&Acirc;&nbsp;the series. Σ n*4"

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. х — sin t, у - csc i, 0 <1< п/2

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. x =} cos 0, y = 2 sin 0, 0< 0 <

> (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. х — sin 0, y — сos s0, -<0 < T

> (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a Cartesian equation of the curve. x = t', y = t .2 3. х

> (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a Cartesian equation of the curve. x = /i, y=1 – t Vi,

> (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a Cartesian equation of the curve. x = sin 1, y =1 - cos t, 0

> (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a Cartesian equation of the curve. х — 12 — 3, у—1+2, —3<1s 3

> (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a Cartesian equation of the curve. x = 3t + 2, y = 2t + 3

> (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a Cartesian equation of the curve. х — 21 — 1, у— +1 x =

> Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. x = e + t, y= e' – t, -2 <t< 2

> Test the series for convergence or divergence. E (-1)*-1 4" n-

> Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. x = t³ + t, _y= t² + 2, -2<t< 2

> Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. x= 1 - t, y= 2t – t°, -1 <t<2

> A cow is tied to a silo with radius r by a rope just long enough to reach the opposite side of the silo. Find the grazing area available for the cow.

> (a) Show that the curvature at each point of a straight line is / = 0. (b) Show that the curvature at each point of a circle of radius r is / = 1/r.

> Use Formula 1 to derive Formula 6 from Formula 8.2.5 for the case in which the curve can be represented in the form /

> Find the radius of convergence and interval of convergence of&Acirc;&nbsp;the series. o n! -0

> Find the surface area generated by rotating the given curve about the y-axis. x = e' – t, y= 4e?, 0<t<1 = 4e2, 0<t<1

> Find the surface area generated by rotating the given curve about the y-axis. x = 3t, y = 2t², 0<t<5

> Find the exact area of the surface obtained by rotating the given curve about the x-axis. х —а сos'0, у —asin'0, 0<0< п/2

> Find the exact area of the surface obtained by rotating the given curve about the x-axis. x = 212 + 1/1, y= 8/t, 1<t< 3

> Find the exact area of the surface obtained by rotating the given curve about the x-axis. x = t, y = t, 0<t<1

> Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Then use your calculator to find the surface area correct to four decimal places. x = t² – t, y=t+ t*, 0<t<1

> Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Then use your calculator to find the surface area correct to four decimal places. x=t+ e', y= e ', 0<t< 1

> Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Then use your calculator to find the surface area correct to four decimal places. x = sin t, y = sin 2t, 0<t< T/2

> Find the radius of convergence and interval of convergence of&Acirc;&nbsp;the series. (-1)"x" Σ n2

> Set up an integral that represents the area of the surface obtained by rotating the given curve about the x-axis. Then use your calculator to find the surface area correct to four decimal places. x = t sin t, y =t cos 1, 0<1<T/2

> A curve called Cornu&acirc;&#128;&#153;s spiral is defined by the parametric equations where C and S are the Fresnel functions that were introduced in Chapter 5. (a) Graph this curve. What happens as / and as / (b) Find the length of Cornu&acirc;&#128;&#

> (a) Graph the epitrochoid with equations What parameter interval gives the complete curve? (b) Use your CAS to find the approximate length of this curve. x= 11 cos t – 4 cos(11t/2) y = 11 sin t – 4 sin(11t/2)

> Find the distance traveled by a particle with position (x, y) as t varies in the given time interval. Compare with the length of the curve. x = cos't, y = cos t, 0 I< 4T

> Find the distance traveled by a particle with position (x, y) as t varies in the given time interval. Compare with the length of the curve. x = sin?t, y = cos?t, 0<t<3T

> Use Simpson&acirc;&#128;&#153;s Rule with n = 6 to estimate the length of the curve x = t – e', y = t + e', -6 <t< 6.

> Find the length of the loop of the curve x = 3t - t3 , y = 3t2.

> Find the radius of convergence and interval of convergence of&Acirc;&nbsp;the series. x" Σ 2n – 1

> (a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylor&acirc;&#128;&#153;s Inequality to estimate the accuracy of the approximation / when x lies in the given interval. (c) Check your result in part (b) by graphing / S

> Graph the curve x = sin t + sin +1.5t, y = cos t and find its length correct to four decimal places.

> Graph the curve and find its exact length. x = cos t + In(tan t), y= sin t, T/4 <t< 3/4

> Graph the curve and find its exact length. x = e' cos t, y = e' sin t, 0 <t<

> Find the exact length of the curve. х — 3 3 cos t - cos Зі, cos 31, y = 3 sin t – sin 3t, 0 <t<+

> Find the exact length of the curve. x = t sin t, y =t cos 1, 0 <1<1

> Find the exact length of the curve. x = 1 + 3t², y= 4 + 2t³, 0 <<t<1

> Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x = t + vt, y=t- Vi, 0<t<1

> Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x = t – 2 sin t, y=1-2 cos t, 0<t<4m

> Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x = t? – t, y= t“, 1<t<4

> Find the radius of convergence and interval of convergence of&Acirc;&nbsp;the series. (-1)"x" Σ 'n

> Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places. x = t + e¯', y=t – e', 0<t< 2

> Let R be the region enclosed by the loop of the curve in Example 1. (a) Find the area of R. (b) If 5 is rotated about the x-axis, find the volume of the resulting solid. (c) Find the centroid of R.

> Find the area enclosed by the x-axis and the curve x =t3 + 1, y = 2t – t2.

> Find equations of the tangents to the curve x = 3t2 + 1, y = 2t3 + 1 that pass through the point (4, 3).

> At what point(s) on the curve x = 3t2 + 1, y = t3 - 1 does the tangent line have slope 1 2 ?

> Find the radius of convergence and interval of convergence of&Acirc;&nbsp;the series. E(-1)"nx" 'x' -1

> Graph the curve x = 22 cos t, y = sin t + sin 2t to discover where it crosses itself. Then find equations of both tangents at that point.

> Show that the curve x = cos t, y = sin t cos t has two tangents at (0, 0) and find their equations. Sketch the curve.

> Graph the curve in a viewing rectangle that displays all the&Acirc;&nbsp;important aspects of the curve. x= 14 + 41° – 81², y=21² – t

> Graph the curve in a viewing rectangle that displays all the&Acirc;&nbsp;important aspects of the curve. x = t* – 2t3 – 2t², y=t³ – t

> Use a graph to estimate the coordinates of the lowest point and the leftmost point on the curve x = t4 - 2t, y = t + t4. Then find the exact coordinates.

> Use a graph to estimate the coordinates of the rightmost point on the curve x = t - t6, y = et. Then use calculus to find the exact coordinates.

> Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work. *= e sino sinº, y = e cs0 cos0

> Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work. x = cos 0, y= cos 30

> Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work. x = t³ – 31, y =t} - 3t²

> (a) What is the radius of convergence of a power series? How do you find it? (b) What is the interval of convergence of a power series? How do you find it?

> Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work. х — — 31, у— ? - 3 x =

> Find dy/dx and d2y/dx2. For which values of t is the curve concave upward? x = cos t, y = sin 2t, 0<t<

> Find dy/dx and d2y/dx2. For which values of t is the curve concave upward? x = t - In t, y = t + In t

> Find dy/dx and d2y/dx2. For which values of t is the curve concave upward? х — 1? + 1, у — е' — 1

> Find dy/dx and d2y/dx2. For which values of t is the curve concave upward? x = e', y=te

> Find dy/dx and d2y/dx2. For which values of t is the curve concave upward? х — + 1, у—r -1

> Find dy/dx and d2y/dx2. For which values of t is the curve concave upward? x = t? + 1, y= t? + t

> Find an equation of the tangent to the curve at the given point. Then graph the curve and the tangent. := sin mt, y= t² + t; (0, 2)

> Find an equation of the tangent to the curve at the given point. Then graph the curve and the tangent. x = t? – 1, y=t² + t + 1; (0, 3)

> Find an equation of the tangent to the curve at the given point by two methods: (a) without eliminating the parameter and (b) by first eliminating the parameter. x = 1 + Vi, y= e"; (2, e)

> What is a power series?

> Find an equation of the tangent to the curve at the given point by two methods: (a) without eliminating the parameter and (b) by first eliminating the parameter. x = 1 + In t, y = t² + 2; (1, 3)

> Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. х — е' sin mt, у — е"; 1— 0 ,21. t =

> Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x =t cos t, y=t sin t; t= T

> Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x= Vĩ, Vi, y = t? – 2t; t=4

> Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x = t³ + 1, y= 1ª + t; t= -1

> Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve. r = 2 + cos(90/4)

> Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve. r= 1 + cos0 (Pac-Man curve)

> Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve. r= | tan 0 |c* o| (valentine curve)

> Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve. r= e sin o – 2 cos(40) (butterfly curve)

> Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve. r= 1- 0.8 sin²0_ (hippopede) r =

> Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve. r= 1 + 2 sin(0/2) (nephroid of Freeth)

> Find the points on the given curve where the tangent line is horizontal or vertical. r = e°

> Find the points on the given curve where the tangent line is horizontal or vertical. r=1+ cos 0

> Find the points on the given curve where the tangent line is horizontal or vertical. r=1- sin 0

> Find the points on the given curve where the tangent line is horizontal or vertical. -r= 3 cos 0

> Determine whether the series is absolutely convergent or conditionally convergent. (-1)* -1 In

> Match the polar equations with the graphs labeled I&acirc;&#128;&#147;VI. Give reasons for your choices. (Don&acirc;&#128;&#153;t use a graphing device.) (a) r= In 0, 1 < 0 < 6 (c) r= cos 30 (e) r= cos(0/2) (b) r= 0°, 0< 0 < 87 (d) r=2 + cos 30 (f)

> Sketch the curve (x2 + y2)3 = 4x2y2

> Test the series for convergence or divergence. E (v2 – 1)

1.99

See Answer