1.99 See Answer

Question: Find the volume obtained by rotating the

Find the volume obtained by rotating the region bounded by the curves about the given axis.
Find the volume obtained by rotating the region bounded by the curves about the given axis.





Transcribed Image Text:

y = sin?x, y = 0, 0


> Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a. f(x) — Vх, а —8

> Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a. 1 S(x) a = 2 1 + x'

> Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a.

> Find the Taylor series for f centered at 4 if What is the radius of convergence of the Taylor series? (-1)" n! f(4) 3"(n + 1)

> If f (n)(0) = ( n+1)! for n = 0, 1, 2, ……, find the Maclaurin series for f and its radius of convergence.

> The graph off is shown. (a) Explain why the series is not the Taylor series of f centered at 1. (b) Explain why the series is not the Taylor series of f centered at 2. y f 1 1.6 – 0.8(x – 1) + 0.4(x – 1)? – 0.1(x – 1)³ + ... 2.8 + 0.5(x – 2) + 1.5(

> Evaluate the integral. dz 107

> Test the series for convergence or divergence. п — 1 n-1 n° +1

> Test the series for convergence or divergence. n? – 1 -1 n° + 1

> Use the information from Exercise 16 to estimate sin 38° correct to five decimal places. Data from Exercise 16: (a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylor’s Inequality to estimate

> Use any test to determine whether the series is absolutely convergent, conditionally convergent, or divergent. (-1)" –1)" -2 п In n

> Use any test to determine whether the series is absolutely convergent, conditionally convergent, or divergent. sin(nT/6) 1 + n/n R-1

> Use any test to determine whether the series is absolutely convergent, conditionally convergent, or divergent. Σ -2In n

> Use any test to determine whether the series is absolutely convergent, conditionally convergent, or divergent. n52n 10**1 n+1

> Use the Ratio Test to determine whether the series is convergent or divergent. 2.4· 6. .... (2n) Σ n!

> Use the Ratio Test to determine whether the series is convergent or divergent. 2.5· 8· 11 3. 5·7.9 2 2·5 2 ·5- 8 3 3. 5 3.5.7 +

> Evaluate the integral. | (In x)°dx

> Use the Ratio Test to determine whether the series is convergent or divergent. 2! 3! 4! 1:3 1.3. 5 1:3. 5·7 п! + (-1)"-1. + 1. 3· 5. .... (2n – 1)

> Use the Ratio Test to determine whether the series is convergent or divergent. (2n)! Σ (л!)? n=1

> Use the Ratio Test to determine whether the series is convergent or divergent. n 100 100" Σ n!

> Use the Ratio Test to determine whether the series is convergent or divergent. の n!

> Use the information from Exercise 5 to estimate cos 80° correct to five decimal places. Data from Exercise 5: Find the Taylor polynomial T3(x) for the function f centered at the number a. Graph f and T3 on the same screen. f(x) cos х, a

> Use the Ratio Test to determine whether the series is convergent or divergent. cos(nп/3) n!

> Use the Ratio Test to determine whether the series is convergent or divergent. 10 (-10)**1 n+1 n-1

> Use the Ratio Test to determine whether the series is convergent or divergent. nT" Σ (-3)ª-| R-1

> Use the Ratio Test to determine whether the series is convergent or divergent. 10" Σ (п + 1)42я1 R-1

> Use the Ratio Test to determine whether the series is convergent or divergent. E ke * k-1

> Evaluate the integral. |x cosh ax dx

> Use the Ratio Test to determine whether the series is convergent or divergent. 00 k= k!

> Calculate 20 or 30 terms of the sequence for p0 = 1 2 and for two values of k such that 1 < k < 3. Graph each sequence. Do the sequences appear to converge? Repeat for a different value of p0 between 0 and 1. Does the limit depend on the choice of p0?

> A sub tangent is a portion of the x-axis that lies directly beneath the segment of a tangent line from the point of contact to the x-axis. Find the curves that pass through the point (c, 1) and whose sub tangents all have length c.

> Find the curve y = f(x) such that f(x) > 0, f(0) − 0, f(1) = 1, and the area under the graph off from 0 to x is proportional to the (n + 1)st power of f(x).

> Find all functions f that satisfy the equation ) dx dx f(x) -1

> Let f be a function with the property that f(0) = 1, f’(0) = 1, and f(a+b) = f(a) f(b) for all real numbers a and b. Show that / for all x and deduce that /

> A student forgot the Product Rule for differentiation and made the mistake of thinking that / However, he was lucky and got the correct answer. The function f that he used was / and the domain of his problem was the interval / .What was the function t?

> Find all functions f such that f is continuous and [f(x)]² = 100 + * {[SM)² + [SOI*} dt for all real x

> Find all curves with the property that if a line is drawn from the origin to any point (x, y) on the curve, and then a tangent is drawn to the curve at that point and extended to meet the x-axis, the result is an isosceles triangle with equal sides meeti

> Find all curves with the property that if the normal line is drawn at any point P on the curve, then the part of the normal line between P and the x-axis is bisected by the y-axis.

> Evaluate the integral. Ste * dt

> Evaluate the integral. ,0.2y dy

> Evaluate the integral. Jx cos 5x dx

> Evaluate the integral using integration by parts with the indicated choices of u and dv. ( Vĩ In x dx; u = In x, dv = /x dx

> A finite Fourier series is given by the sum Show that the mth coefficient am is given by the formula N f(x) = E a, sin nx - a, sin x + a2 sin 2x + · · · + an sin Nx f(x) sin mx dx

> Prove the formula, where m and n are positive integers. 0if m+n п if m — п cos mx cos nx dx

> Prove the formula, where m and n are positive integers. So if m +n " sin mx sin nx dx T if m = n

> Prove the formula, where m and n are positive integers. T" sin mx cos nx dx = 0

> Household electricity is supplied in the form of alternating current that varies from 155 V to 2155 V with a frequency of 60 cycles per second (Hz). The voltage is thus given by the equation where t is the time in seconds. Voltmeters read the RMS (root-m

> Find the volume obtained by rotating the region bounded by the curves about the given axis. у — sec x, у — cos x, 0 <x< п/3; about y —-1

> Find the volume obtained by rotating the region bounded by the curves about the given axis. y = sin x, y = cos x, 0 < x </4; _about y 1

> Use a graph of the integrand to guess the value of the integral. Then use the methods of this section to prove that your guess is correct. sin 27x cos 5T x dx Jo

> Use a graph of the integrand to guess the value of the integral. Then use the methods of this section to prove that your guess is correct. *2m cos'x dx Jo

> Find the area of the region bounded by the given curves. y tan x, y = tan?x, 0<x T/4

> Find the area of the region bounded by the given curves. y = sin?x, y = sin'x, 0<x< T

> Find the average value of the function f(x) = sin2x cos3x on the interval /

> Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the integrand and its antiderivative (taking C = 0). ( sec“(}x) dx

> Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the integrand and its antiderivative (taking C = 0). | sin 3x sin 6x dx

> Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the integrand and its antiderivative (taking C = 0). sin'x cos'x dx

> Prove the Root Test.

> Evaluate the indefinite integral. Illustrate, and check that your answer is reasonable, by graphing both the integrand and its antiderivative (taking C = 0). S x sin?(x²) dx

> Evaluate the integral. Sx tan'x dx

> Evaluate the integral. dx cos x - 1

> Evaluate the integral. *w/4 cos 40 de

> Evaluate the integral. *w/6 1 + cos 2x dx

> Evaluate the integral. *w/2 cos 5t cos 10t dt

> Evaluate the integral. sin 20 sin 60 do

> Evaluate the integral. | sin 8x cos 5x dx

> Evaluate the integral. w/3 csc'x dx Ju/6 (

> Use the sum of the first 10 terms to approximate the sum of the series Use Exercise 46 to estimate the error. Data from Exercise 46: Let / be a series with positive terms and let / Suppose that / converges by the Ratio Test. As usual, we let Rn be the

> Evaluate the integral. csc x dx

> Evaluate the integral. "w/2 csc*0 cot*0 d0 a/4

> Evaluate the integral. *w/2 " cot°o csc'p dp Jm/4

> Evaluate the integral. *w/2 cot'x dx /4

> Evaluate the integral. sin cos'o

> Evaluate the integral. sec x tan x dx

> Evaluate the integral. | tan?x sec x dx

> Evaluate the integral. ( tan'x dx

> Evaluate the integral. w/4 tan't dt

> Evaluate the integral. | dx tan'x sec"x

> (a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylor&acirc;&#128;&#153;s Inequality to estimate the accuracy of the approximation / when x lies in the given interval. (c) Check your result in part (b) by graphing / S

> Evaluate the integral. | tan'x sec'x dx

> Evaluate the integral. tan'x sec x dx

> Evaluate the integral. w/4 sec°0 tan°0 do

> Evaluate the integral. | tan'x sec'x dx

> Evaluate the integral. | (tan?x + tan“x) dx

> Evaluate the integral. ( tan?0 sec*0 do

> Evaluate the integral. tan x sec'x dx

> Evaluate the integral. |x sin'x dx

> Evaluate the integral. t sin't dt

> Evaluate the integral. sin x cos(r) dx

> Evaluate the integral. | cot x cos'x dx

> Evaluate the integral. sin°(1/t) dt

> Evaluate the integral. | Vcos 0 sin*0 do

> Evaluate the integral. "w/2 (2 – Jo sin 0)² d0

> Evaluate the integral. *w/2 sin'x cos?x dx Jo

> Evaluate the integral. (" sin?t cos*t dt

> Evaluate the integral. " cos“(21) dt

> Evaluate the integral. *2 sin°(40) do

> Evaluate the integral. '피/2 cos²0 d0 Jo

> Evaluate the integral. |t cos (1²) dt

> Evaluate the integral. sin (21) cos (21) dt

1.99

See Answer