1.99 See Answer

Question: Evaluate the integral. /

Evaluate the integral.
Evaluate the integral.





Transcribed Image Text:

fx'e "dx


> Evaluate the integral. y dy (y + 4)(2y – 1)

> Evaluate the integral. 5х + 1 - dx (2х + 1)(х — 1)

> Write out the form of the partial fraction decomposition of the function (as in Example 7). Do not determine the numerical values of the coefficients. 16 + 1 (a) 16 + t³ x* + 1 (b) (x² – x)(x* + 2x² + 1)

> Write out the form of the partial fraction decomposition of the function (as in Example 7). Do not determine the numerical values of the coefficients. (a) x? – 4 (b) (x² – x + 1)(x² + 2)²

> Write out the form of the partial fraction decomposition of the function (as in Example 7). Do not determine the numerical values of the coefficients. x² – 1 x* – 2x + x? + 2x – 1 (a) (b) x³ + x + x x² – 2x + 1

> Write out the form of the partial fraction decomposition of the function (as in Example 7). Do not determine the numerical values of the coefficients. x' +1 (b) x³ – 3x² + 2x 1 (a) x? + x*

> Write out the form of the partial fraction decomposition of the function (as in Example 7). Do not determine the numerical values of the coefficients. х — 6 (a) x² + x – 6 x? (b) x? + x + 6

> Write out the form of the partial fraction decomposition of the function (as in Example 7). Do not determine the numerical values of the coefficients. 4 + x 1- x (a) (1 + 2х)(3 — х) (b) x' + x*

> Use a power series to approximate the definite integral to six decimal places. 1/2 " arctan(x/2) dx

> The functions y = ex2 and y = x2 ex2 don’t have elementary antiderivatives, but / does. Evaluate /

> Evaluate the integral. sin x cos x sin'x + cos“x

> Evaluate the integral. – sin x dx

> Evaluate the integral. sec x cos 2x sin x + sec x

> Evaluate the integral. Sx sin'x cos x dx

> Evaluate the integral. 1+ sin x dx SI 1- sin x

> Evaluate the integral. xe* dx /1 + e*

> Evaluate the integral. dx Vx² + 1

> Evaluate the integral. dx х In x — х

> Use a power series to approximate the definite integral to six decimal places. r0.3 Jo 1+ x3 dx

> Evaluate the integral. :+ arcsin. dx VI - x² 1 –

> Evaluate the integral. In(x + 1) ax x?

> Evaluate the integral. e 2x dx 1x 1+ e*

> Evaluate the integral. 1 dx 1+ 2e* — е *

> Evaluate the integral. 1 + x² dx 2

> Evaluate the integral. x? dx хв + 3x3 + 2

> Evaluate the integral. 1 dx /x + 1 + Vx

> Evaluate the integral. m/3_In(tan x) – dx Ja/4 sin x cos x

> Evaluate the integral. sin 2x dx J1+ cos“x

> Evaluate the integral. -dx I + x^^ Vx + 1

> Evaluate the indefinite integral as a power series. What is the radius of convergence? tan x dx

> Evaluate the integral. dx

> Evaluate the integral. de 1 + cos?e

> Evaluate the integral. de 1 + cos 0

> Evaluate the integral. dx J x*/4x? – 1

> Evaluate the integral. dx x* - 16

> Evaluate the integral. x In x dx /x² 1

> Evaluate the integral. fxk + c dx

> Evaluate the integral. dx x^x + x^

> Evaluate the integral. dx x + x/r

> Evaluate the integral. | (x + sin x)² dx

> Evaluate the indefinite integral as a power series. What is the radius of convergence? |x? In(1 + x) dx

> Evaluate the integral. |x' sinh mx dx х* si

> Evaluate the integral. dx Jx(x* + 1)

> Evaluate the integral. 1 x/4x2 + 1

> Evaluate the integral. 1 dx J x?V4x + 1

> Evaluate the integral. 1 dx J x/4x + 1

> Evaluate the integral. x/2 - VI - x² dx

> Evaluate the integral. Sx(x – 1) *dx

> Evaluate the integral. (x – 1)e* dx .2 x

> Evaluate the integral. SVi+e" dx

> Evaluate the indefinite integral as a power series. What is the radius of convergence? i - 1+ t

> Evaluate the integral. dx 1 + x³

> Evaluate the integral. tan'x dx

> Evaluate the integral. |O tan'o do

> Evaluate the integral. | sin 6x cos 3x dx

> Evaluate the integral. sec 0 tan 0 o - J sec'o – sec 0

> Evaluate the integral. /3 sin 0 cot 0 do Jw/6 sec 0

> Evaluate the integral. 1 + sin x dx 1 + cos x

> Evaluate the integral. 12 1 + 4 cot x dx Ja/4 4 - cot x

> Evaluate the integral. |V3 – 2x – x² dx

> Evaluate the integral. 3/3 3 dx 2

> Evaluate the indefinite integral as a power series. What is the radius of convergence? dt

> Evaluate the integral. 1 + x dx

> Evaluate the integral. S,le - 1|dx

> Evaluate the integral. S In(x + vx? – T) dx

> Evaluate the integral. S sin Jat dt

> Evaluate the integral. dx J 1+ e*

> Evaluate the integral. 3x² + 1 dx Jo x³ + x? + x +1

> Evaluate the integral. + tan x)? sec x dx

> Evaluate the integral. + dx

> Evaluate the integral. In x -dx x/1 + (In x)²

> Evaluate the integral. | arctan /x dx

> Find a power series representation for f, and graph f and several partial sums sn(x) on the same screen. What happens as n increases? f(x) = tan (2x)

> (a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylor’s Inequality to estimate the accuracy of the approximation / when x lies in the given interval. (c) Check your result in part (b) by graphing / S

> Evaluate the integral. t cos?t dt Jo CoS

> Evaluate the integral. x? dx VI - x2

> Evaluate the integral. X sec x tan x dx

> Evaluate the integral. In(1 + x²) dx

> Evaluate the integral. ( sin't cos't dt

> Evaluate the integral. 2х — 3 dx x' + 3x

> Evaluate the integral. 1 dx x'/x² – 1

> Evaluate the integral. cos(1/x) · dx ах

> Evaluate the integral. х+ 2 dx 2 х3 + 3х — 4

> Evaluate the integral. Se sin t cos t dt |t sin t

> Find a power series representation for f, and graph f and several partial sums sn(x) on the same screen. What happens as n increases? 1 + x S(x) = In 1- x

> Evaluate the integral. - dx (2х + 1)°

> Evaluate the integral. dt t* + 2

> Evaluate the integral. sin'x dx cos x

> Evaluate the integral. ( Vỹ In y dy

> Evaluate the integral. (3r + 1)7 dx

> Evaluate the integral. cos x dx 1- sin x

> Computer algebra systems sometimes need a helping hand from human beings. Try to evaluate with a computer algebra system. If it doesn’t return an answer, make a substitution that changes the integral into one that the CAS can evaluate.

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. dx V1 + x

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. | tan'x dx

> Find a power series representation for f, and graph f and several partial sums sn(x) on the same screen. What happens as n increases? f(x) = In(1 + x*)

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. - x² dx

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. | cos*x dx

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. dx e*(3e* + 2)

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. fxVF + 4 dx

> Use a computer algebra system to evaluate the integral. Compare the answer with the result of using tables. If the answers are not the same, show that they are equivalent. Sese'x dx

1.99

See Answer